< 1- 1/97 > x < 1 - 1/98> x <1 - 1/99 > x ...x < 1- 1/1000>
(1-1/97)x(1-1/98)x....x(1-1/1000)=
( 1- 1/97) x ( 1- 1/98) x … x ( 1-1/1000)
= 96/97 x 97/98 x ….x 999/1000
= 96/1000
= 12/125
(1-1/97)x(1-1/98)x....x(1-1/1000)
=96/97 x 97/98 x ... x 999/1000
= 96/1000
= 12/125
(1-1/97)x(1-1/98)x........x(1-1/1000)
\(=\frac{96}{97}\cdot\frac{97}{98}\cdot...\cdot\frac{999}{1000}=\frac{96\cdot97\cdot...\cdot999}{97\cdot98\cdot...\cdot999\cdot1000}=\frac{96}{1000}=\frac{12}{125}\)
tính: (1- 1/97) x ( 1- 1/98) x... x ( 1/1000) =...
\(\left(1-\frac{1}{97}\right)\times\left(1-\frac{1}{98}\right)\times...\times\left(1-\frac{1}{1000}\right)=\frac{96}{97}\times\frac{97}{98}\times...\times\frac{999}{1000}=\frac{96}{1000}=\frac{12}{125}\)
( 1 - 1/97 ) x ( 1 - 1/98 ) x .... x ( 1 - 1/1000)
Bài làm
\(\left(1-\frac{1}{97}\right)x\left(1-\frac{1}{98}\right)x...x\left(1-\frac{1}{1000}\right)\)
= \(\left(\frac{97}{97}-\frac{1}{97}\right)x\left(\frac{98}{98}-\frac{1}{98}\right)x...x\left(\frac{1000}{1000}-\frac{1}{1000}\right)\)
= \(\frac{96}{97}x\frac{97}{98}x...x\frac{999}{1000}\)
= \(\frac{96}{1000}\)
= \(\frac{12}{125}\)
# Chúc bạn học tốt #
(1 - 1/97) .(1 - 1/98)....(1 - 1/1000)
= (97/97 - 1/97).(98/98 - 1/98) ... (1000/1000 - 1/1000)
= 96/97 . 97/98....999/1000
= 96.97....999/97.98.....1000
= 96/1000
= 12/125
\((1-\frac{1}{97})\cdot(1-\frac{1}{98})\cdot...\cdot(1-\frac{1}{1000})\)
\(=(\frac{97}{97}-\frac{1}{97})(\frac{98}{98}-\frac{1}{98})....(\frac{1000}{1000}-\frac{1}{1000})\)
\(=\frac{96}{97}\cdot\frac{97}{98}\cdot...\cdot\frac{999}{1000}\)
\(=\frac{96}{1000}\)
\(=\frac{12}{125}\)
Chúc bạn học tốt ~
(1- 1/97) x (1- 1/98) x ...... x ( 1 - 1/1000=?
\(=\frac{96}{97}\cdot\frac{97}{98}\cdot...\cdot\frac{999}{1000}=\frac{96\cdot97\cdot...\cdot999}{97\cdot98\cdot...\cdot1000}=\frac{96\cdot1\cdot1\cdot...\cdot1}{1\cdot1\cdot...\cdot1\cdot1000}=\frac{96}{1000}=\frac{12}{125}\)
C =(1-1/97)x(1-1/98)x(1-1/99)x.....x(1-1/1000)
\(C=\left(1-\frac{1}{97}\right).\left(1-\frac{1}{98}\right).\left(1-\frac{1}{99}\right)......\left(1-\frac{1}{1000}\right)\)
\(C=\frac{96}{97}.\frac{97}{98}.\frac{98}{99}........\frac{999}{1000}\)
\(C=\frac{96}{1000}\)
\(C=\frac{12}{125}\)
(1-1/97) x (1-1/98) x (1-1/99) x (1-1/1000) = ..............
(1-1/97) x (1-1/98) x (1-1/99) x (1-1/1000) = 96/97 x 97/98 x 98/99 x 999/1000
= 96 x 97 x 98 x 999 / 97 x 98 x 99 x 1000 = 12 x 111 / 11 x 125 = 1332 / 1375
(1-1/97) x (1-1/98)x....x(1-1/1000)=
\(=\frac{96}{97}\cdot\frac{97}{98}\cdot...\cdot\frac{999}{1000}=\frac{96\cdot97\cdot...\cdot999}{97\cdot98\cdot...\cdot1000}=\frac{96\cdot1\cdot...\cdot1}{1\cdot...\cdot1\cdot1000}=\frac{96}{1000}=\frac{12}{125}\)
( 1 - 1/97 ) x ( 1 - 1/98 ) x ... ( 1 - 1/1000 )
= \(\frac{96}{97}\)x \(\frac{97}{98}\)x ... x \(\frac{999}{1000}\)
= \(\frac{96x97x...x999}{97x98x...x1000}\)
= \(\frac{96}{1000}\)
= \(\frac{12}{125}\)
( 1 - 1/97 ) x ( 1 - 1/98 ) x ...... x ( 1 - 1/1000 ) = ?