Bài 1: Chứng tỏ rằng tổng sau không chia hết cho 10
A=405n + 2405 + m2 (m,n thuộc N ; n khác 0)
chứng tỏ rằng: 405n + 2405 + 1737 (n E N) ko chia hết cho 10
tìm 2 chữ số tận cùng của số 5n n ở trên số 5 nhé n>1
chứng tỏ rằng các tổng,hiệu sau không chia hết cho 10 A=98*96*94*92-91*93*95*97
B=405n n ở trên nhé+2405 405 ở trên nhé+m2 2 ở trên nhé m,n thuộc N;
1, Tìm chữ số tận cùng của các số sau
a,74 mũ 30 b, 49 mũ 31 c,87 mũ 32 d,58 mũ 33
2, Chứng tỏ rằng các tổng (hiệu) không chia hết cho 10
a, 98 x 96 x 94 x 92 -91x 93x 95 x 97
b,405 mũ n +2405 +m mũ 2 (m, n thuộc n , n khác 0)
Tìm số tự nhiên x biết:
A.x+10 chia hết cho x+1
Bài 2. Biết rằng 7a+2b chia hết cho 13 ( với a,b thuộc N ).Chứng tỏ rằng 10a+b chia hết cho 13
Cho a,b thuộc N
a) biết a+5b chia hết cho 7. Chứng tỏ rằng 10a+b cũng chia hết cho 7
b) biết 7a+2b chia hết cho 13. Chứng tỏ rằng 10a+b cũng chia hết cho 13
mi tích tau tau tích mi xong tau trả lời nka
việt nam nói là làm
a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^
Cho a,b thuộc N
a) biết a+5b chia hết cho 7. Chứng tỏ rằng 10a+b cũng chia hết cho 7
b) biết 7a+2b chia hết cho 13. Chứng tỏ rằng 10a+b cũng chia hết cho 13
Cho a,b thuộc N
a) biết a+5b chia hết cho 7. Chứng tỏ rằng 10a+b cũng chia hết cho 7
b) biết 7a+2b chia hết cho 13. Chứng tỏ rằng 10a+b cũng chia hết cho 13
chứng tỏ rằng tổng sau không chia hết cho 10:
A=405^n+2^405+m^2 (m,n thuộc N;n khác 0)
A = 405n + 2405 + m2
405 n tận cùng là 5
2405 = (24)101 . 2
= (...6)101 . 2 = (..6).2 = (..2)
m2 tận cùng là 0;1;4;5;6;9
Vậy chữ số tận cùng của A có thể là 7 ; 8 ; 3 ; 2 ; 6
n không có tận cùng là 0
Vậy A không chia hết cho 10
Chứng tỏ rằng tổng sau không chia hết cho 10
A = 405^n + 2^405 +m^2(m,n thuộc N; m khác 0)
Ta có \(405^n\)có tận cùng là 5 ( vì 405 có tận cùng là 5 )
Khì lũy thừa 2 lên thì ta được tận cùng của \(2^n\) có quy luật là 2-4-8-6-2-... ( là một nhóm gồm 4 chữ số 2,4,8,6 )
Dựa trên quy luật trên ta có : 405 : 4 = 101 dư 1 . Đếm theo quy luật trên thì \(\Rightarrow\)\(^{2^{405}}\)sẽ có tận cùng là 1
Ta có : (...5) + (...2) + \(m^2\)= (...7) + \(m^2\)
\(m^2\)( m \(\in\)\(ℕ\)) thì \(m^2\)sẽ có tận cùng là các chữ số 0,1,4,5,6,9
Vậy với \(405^n+2^{405}+m^2\)sẽ có tận cùng là
TH1 : \(405^n+2^{405}+m^2\)= (...5) + (...2) + (...0) = (...7)
TH2 : \(405^n+2^{405}+m^2\)= (...5) + (...2) +(...1) = (...8)
TH3 : \(405^n+2^{405}+m^2\)= ( ..5) + (..2) + (...4) = (....1)
TH4 :\(405^n+2^{405}+m^2\)= (...5) + (...2) + (...5) = (...2)
TH5 : \(405^n+2^{405}+m^2\)= (...5) + (...2) + (...6) = (...3)
TH6 : \(405^n+2^{405}+m^2\)= (...5) + (...2) + (...9) = ( ...6)
\(\Rightarrow\)\(405^n+2^{405}+m^2\)không chia hết cho 10 ( vì phải có tận cùng = 0 ) \(\Rightarrow\)dpcm