Tìm dư khi chia 2^367 cho 31
1. tìm số tự nhiên nhỏ nhất biết rằng .Khi chia số này cho số 29 dư 5 chia 31 dư 28
2.tìm X biết khi chia 129 cho X ta được số dư 10.Khi chia 61 cho X ta cũng được số dư 10
1.Gọi số tự nhiên cần tìm là A
Chia cho số 29 dư 5 nghĩa là: A = 29p + 5 (p thuộc N)
Tương tự: Chia cho số 31 dư 28 nghĩa là: 31q + 28 (q thuộc N)
Nên 29p + 5 = 31q + 28 => 29 (p - q) = 2q + 23
Ta thấy : 2q + 23 là số lẻ => 29 (p - q) cũng là số lẻ => p - q = 1
Theo giả thiết A nhỏ nhất nên => q nhỏ nhất (A = 31q + 28)
=> 2q = 29(p - q) - 23 nhỏ nhất
=> p- q nhỏ nhất
Do đó p - q = 1 => 2q = 29 -23 = 6
=> q = 3
Vậy số cần tìm A là : 31q + 28 = 31 x 3 + 28 = 121
2. Số đó phải lớn hơn 10. Ta có:
129 : x = b =>x.b + 10 = 129 (b là thương) => x = (129 - 10) : b = 129 : b
61 : x = c dư 10 => x.c + 10 = 61 (c là thương) => x = 51 : c
x = 119 : b = 51 : c
119 chỉ chia hết cho 7 và 17 (ngoài 1 và 119) : 119 : 17 = 7
51 chỉ chia hết cho 3 và 17 (ngoài 1 và 51) : 51 : 3 = 17
Mà số đó lớn hơn 10 nên x = 17
Vậy x = 17
Bạn nào giúp mình với
2 số tự nhiên có tổng bằng 367. Nếu lấy số lớn chia cho số nhỏ thì được thương là 2 và dư là 31. Tìm 2 số đó
Bạn nào biết cách giải thì giúp mình nha. Mình cảm ơn trước :>
Coi số lớn là 2 phần và 31 đơn vị và số bé là 1 phần :
Số lớn là : ( 367 - 31) : ( 1 + 2 ) x 2 + 31 = 255
Số bé là : 367 - 255 = 112
cho A=2^2018-1. Tìm số dư khi A chia cho 31. đồng dư
Ta có : \(2\equiv1\left(mod31\right)\)
\(\Rightarrow2^{2018}\equiv1^{2018}\equiv1\left(mod31\right)\)
\(\Rightarrow2^{2018}-1\equiv0\left(mod31\right)\)
Vậy số dư của A cho 31 là 0
Ta có :
25 = 1 [mod 31]
[25]403= 1 [mod 31]
22015 = 1 [mod31]
22018 = 8 [mod31]
22018 - 1 = 7 [mod31]
Vậy 22018 - 1 chia 31 dư 7
Tìm dư khi chia :
A=1+5+5^2+...+5^31
cho 6 cho 31
chia hết cho6
chia hết cho 31
đúng thì k nha
TÌM số nhỏ nhất khi chia cho 29 dư 5; Khi chia cho 31 thì dư 29.
tìm số dư khi chia 2^2008^2009 cho 31
Tìm STN nhỏ nhất , khi chia nó cho 29 dư 5 ,khi chia cho 31 dư 28 . Tìm số đó
tìm số tự nhiên nhỏ nhất , biết rằng khi chia số này cho 29 thì dư 5 và chia cho 31 thì dư 2
Gọi số tự nhiên cần tìm là : A
Gọi số dư khi chia cho 29 là : p
Gọ số dư khi chia cho 31 là : q
Theo bài ra ta có :
31q + 2 = 29p + 5
Ở đây p > q vì nếu p \(\le\) q ta được : 31q - 29p + 3 = 0 là vô lý vì 31q - 29p+ 3 > 0 với giả thiết p \(\le\)q ( 29p \(\le\)29q \(< \)31q )
Vậy p = q . Ta có :
29 ( p - q ) = 5 + 2q Vì A là nhỏ nhất nên với p ; q ở trên thì p - q nhỏ nhất = 1 thay lại vào ta được : q = ( 29 - 5 ) : 2 = 12 vậy p = 13 thay vào ta được : A = 29 x 13 + 5 = 382
Số đó là 63
63: 29 = 2 dư 5
63: 31 = 2 dư 2
Tìm một số khi chia số đó cho 29 thì dư 5. Khi chia cho 31 thì dư 29
Giả sử số cần tìm là A đã bớt đi 5.
Khi đó A chia hết cho 29, còn A chia cho 31 dư: 29 - 5 = 24
=> A=31x k+24 (k là số tự nhiên)
Thử chọn: k=0,1,2,3,...ta thấy: khi k=17 thì A=551 chia hết cho 29
Vậy số cần tìm là: A = 551 + 5 = 556
Giả sử số cần tìm là A đã bớt đi 5.
Khi đó A chia hết cho 29, còn A chia cho 31 dư: 29 - 5 = 24
=> A=31x k+24 (k là số tự nhiên)
Thử chọn: k=0,1,2,3,...ta thấy: khi k=17 thì A=551 chia hết cho 29
Vậy số cần tìm là: A = 551 + 5 = 556
Gọi số đó là A( A >0)
Nếu tăng A lên 2 đơn vị thì A +2 chia hết cho 31 –> A + 2 chia cho 29 dư 7
Ta thấy để chia hết cho 31 và 29 thì ta cần thêm vào A +2 số đơn vị là: 11 x 31 = 341
Vậy ta để A chia hết cho 31 va 29 thì ta cần thêm vào 341 + 2 = 343 đơn vị.
Số nhỏ nhất chia hết cho 29 và 31 là : 31 x 29 =899
Vậy số cần tìm là: 899 – 343=556
ủng hộ nhak