Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen Trang Mai Quyen
Xem chi tiết
Kim Tae Huynh  123
Xem chi tiết
Nguyễn Ngọc Sang
Xem chi tiết
Ngô Tuấn Vũ
30 tháng 10 2015 lúc 11:34

A)Gọi hai số chẵn liên tiếp là 2k; 2k+2(k:số tự nhiên) 
            Ta có:

2k.(2k+2) =4k^2+4k =4k.(k+1) 
Vì tích hai số tư nhiên liên tiếp luôn chia hết cho 2 
=>k(k+1) chia hết cho 2 
=> 4k(k+1) chia hết cho 2*4=8 

=>4k(k+1) chia hết cho 8(ĐPCM)

Ngô Tuấn Vũ
30 tháng 10 2015 lúc 11:34

Gọi hai số chẵn liên tiếp là 2k; 2k+2(k:số tự nhiên) 
Ta có: 2k.(2k+2) =4k^2+4k =4k.(k+1) 
Vì tích hai số tư nhiên liên tiếp luôn chia hết cho 2 
Nên k(k+1) chia hết cho 2 
=> 4k(k+1) chia hết cho 2*4=8 

=> 4k(k+1) chia hết cho 8

Đặng Hồng Minh
Xem chi tiết
Kunzy Nguyễn
23 tháng 8 2015 lúc 13:51

a) Gọi hai số chẵn liên tiếp là 2k; 2k+2(k:số tự nhiên) 
Ta có: 2k.(2k+2) =4k^2+4k =4k.(k+1) 
Vì tích hai số tư nhiên liên tiếp luôn chia hết cho 2 
Nên k(k+1) chia hết cho 2 
=> 4k(k+1) chia hết cho 2*4=8 

 

Thằn Lằn
10 tháng 6 2017 lúc 19:56

Chứng tỏ rằng tích của ba số tự nhiên lên tiếp chia hết cho 6.

Hoàng Hà Linh
Xem chi tiết
Băng Dii~
20 tháng 10 2016 lúc 14:38

Chứng minh rằng tích của 2 số tự nhiên liên tiếp chia hết cho 8.

Gọi hai số chẵn liên tiếp là 2k ; 2k + 2 (k:số tự nhiên) 
Ta có: 2k  .( 2k + 2 ) = 4k2 + 4k = 4k . (k+1) 
Vì tích hai số tư nhiên liên tiếp luôn chia hết cho 2 
Nên k(k+1) chia hết cho 2 
=> 4k(k+1) chia hết cho 2*4=8 

 nhé !

le hong anh
Xem chi tiết
Nguyễn Ngọc Anh Minh
15 tháng 10 2019 lúc 8:49

Bài 1

Gọi 3 số tự nhiên liên tiếp là n; n+1; n+2. Tổng của chúng là

n+n+1+n+2=3n+3=3(n+1) chia hết cho 3

Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3. Tổng của chúng là

n+n+1+n+2+n+3=4n+6=4n+4+2=4(n+1)+2 chia cho 4 dư 2

Bài 2

(Xét tính chẵn hoặc lẻ của n)

+ Nếu n lẻ thì n+3 chẵn; n+6 lẻ => (n+3)(n+6) chẵn => chia hết cho 2

+ Nếu n chẵn thì n+3 lẻ, n+6 chẵn => (n+3)(n+6) chẵn => chia hết cho 2

=> (n+3)(n+6) chia hết cho 2 với mọi n

Nguyen Duong
Xem chi tiết
tran vinh
12 tháng 7 2021 lúc 19:58

bạn hãy áp dụng công thức này mà làm: k.(k+1)....(k+n) luôn chia hết cho 1,2,...,n+1 biết k và n là số nguyên

gọi 2 số chẵn liên tiếp đó là: 2k,2k+2

2k.(2k+2)=4k(k+1) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2) chia hết cho 8

gọi 3 số chẵn liên tiếp đó là: 2k,2k+2,2k+4

2k.(2k+2)(2k+4)=8k(k+1)(k+2) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2)(2k+4) chia hết cho 16 (1)

k(k+1)(k+2) chia hết cho 3 suy ra 8k(k+1)(k+2) chia hết cho 3 suy ra 2k.(2k+2)(2k+4) chia hết cho 3 (2)

từ (1),(2) suy ra 2k.(2k+2)(2k+4) chia hết cho 48 do (16,3)=1

câu c, tương tự vậy

Khách vãng lai đã xóa
Phùng Đoàn Bảo Vy (minh...
13 tháng 10 2021 lúc 20:44

ASDWE RHTYJNHWSAVFGB

Khách vãng lai đã xóa
Phan Thị Bảo Xuyến
Xem chi tiết
nguyen quốc huy
23 tháng 10 2017 lúc 19:24

a Gọi 2 số tự nhiên la k và k+2

ta có k.(k+2)=k2+2k

Nếu k:2 => k2:2=>2k:2

=>(k2+2k):2

Nếu k ko chia hết cho 2 

k2là số lẻ =.2k la số lẻ

Mà số lẻ + số lẻ = số chẵn

=>(k2+2k):2

Nguyễn Kim Ngân
Xem chi tiết
Valak
14 tháng 10 2017 lúc 8:08

a) Ta có : 2 số tự nhiên liên tiếp là : 2k và 2k + 1 trong đó 2k chia hết cho 2

b) Ta có : 3 số tự nhiên liên tiếp là 3k ; 3k + 1 và 3k + 2 trong đó 3k chia hết cho 3

c) Ta có : 3 số tự nhiên liên tiếp là 3k ; 3k + 1 và 3k + 2 

      3k + 3k + 1 + 3k + 2 = ( 3k + 3k + 3k ) + ( 2 + 1 ) = 9k + 3

\(\hept{\begin{cases}9k⋮3\\3⋮3\end{cases}\Rightarrow\left(9k+3\right)⋮3}\)

d) Tương tự

Đoàn Nhã Khánh Vy
14 tháng 10 2017 lúc 7:46

tk mk nhá

ta thi hong hai Tathpthu...
6 tháng 7 2018 lúc 10:49

Có ai muốn làm bạn tình cùng tôi ko