Các bạn giúp mik với ạ:
Chứng tỏ rằng :Tích của 2 số chẵn liên tiếp chia hết cho 8
a) Chứng tỏ rằng tích của 2 số chẵn liên tiếp chia hết cho 8.
b) Chứng tỏ rằng tích của 3 số tự nhiên liên tiếp chia hết cho 6
a, chứng tỏ rằng tích của hai số chẵn liên tiếp thì chia hết cho 8
b, Chứng tỏ rằng tích cuar ba số tự nhiên liên tiếp thì chia hết cho 6
c, n2 + n -1
chứng tỏ rằng:
a)tích hai số chẵn liên tiếp thì chia hết cho 8.
b)tích ba số chẵn liên tiếp thì chia hết cho 48
A)Gọi hai số chẵn liên tiếp là 2k; 2k+2(k:số tự nhiên)
Ta có:
2k.(2k+2) =4k^2+4k =4k.(k+1)
Vì tích hai số tư nhiên liên tiếp luôn chia hết cho 2
=>k(k+1) chia hết cho 2
=> 4k(k+1) chia hết cho 2*4=8
=>4k(k+1) chia hết cho 8(ĐPCM)
Gọi hai số chẵn liên tiếp là 2k; 2k+2(k:số tự nhiên)
Ta có: 2k.(2k+2) =4k^2+4k =4k.(k+1)
Vì tích hai số tư nhiên liên tiếp luôn chia hết cho 2
Nên k(k+1) chia hết cho 2
=> 4k(k+1) chia hết cho 2*4=8
=> 4k(k+1) chia hết cho 8
Bài 5:
a) Chứng tỏ rằng tích của hai số chẵn liên tiếp chia hết cho 8.
b) Chứng tỏ rằng tích của ba số tự nhiên lên tiếp chia hết cho 6.
a) Gọi hai số chẵn liên tiếp là 2k; 2k+2(k:số tự nhiên)
Ta có: 2k.(2k+2) =4k^2+4k =4k.(k+1)
Vì tích hai số tư nhiên liên tiếp luôn chia hết cho 2
Nên k(k+1) chia hết cho 2
=> 4k(k+1) chia hết cho 2*4=8
Chứng tỏ rằng tích của ba số tự nhiên lên tiếp chia hết cho 6.
Chứng tỏ rằng : Tích 2 số chẵn TN liên tiếp chia hết cho 8
Chứng minh rằng tích của 2 số tự nhiên liên tiếp chia hết cho 8.
Gọi hai số chẵn liên tiếp là 2k ; 2k + 2 (k:số tự nhiên)
Ta có: 2k .( 2k + 2 ) = 4k2 + 4k = 4k . (k+1)
Vì tích hai số tư nhiên liên tiếp luôn chia hết cho 2
Nên k(k+1) chia hết cho 2
=> 4k(k+1) chia hết cho 2*4=8
nhé !
bài1 chứng tỏ rằng tổng của 3 só tự nhiên liên tiếp chia hết cho 3 và tổng cuả 4 số tự nhiên liên tiếp thì không chia hết cho 4
bài 2 chứng tỏ rằng với mọi số tự nhiên n thì tích (n+3).(n+6 ) thì chia hết cho 2
Các bạn giải rõ ràng cả hai bì giúp mình với nhé.Mình cảm ơn các bạn nhiều
Bài 1
Gọi 3 số tự nhiên liên tiếp là n; n+1; n+2. Tổng của chúng là
n+n+1+n+2=3n+3=3(n+1) chia hết cho 3
Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3. Tổng của chúng là
n+n+1+n+2+n+3=4n+6=4n+4+2=4(n+1)+2 chia cho 4 dư 2
Bài 2
(Xét tính chẵn hoặc lẻ của n)
+ Nếu n lẻ thì n+3 chẵn; n+6 lẻ => (n+3)(n+6) chẵn => chia hết cho 2
+ Nếu n chẵn thì n+3 lẻ, n+6 chẵn => (n+3)(n+6) chẵn => chia hết cho 2
=> (n+3)(n+6) chia hết cho 2 với mọi n
a) Chứng minh rằng: Tích của hai số chẵn liên tiếp thì chia hết cho 8
b) Chứng minh rằng: Tích của ba số chẵn liên tiếp thì chia hết cho 48
c) Chứng minh rằng: Tích của bốn số chẵn liên tiếp thì chia hết cho 384
bạn hãy áp dụng công thức này mà làm: k.(k+1)....(k+n) luôn chia hết cho 1,2,...,n+1 biết k và n là số nguyên
gọi 2 số chẵn liên tiếp đó là: 2k,2k+2
2k.(2k+2)=4k(k+1) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2) chia hết cho 8
gọi 3 số chẵn liên tiếp đó là: 2k,2k+2,2k+4
2k.(2k+2)(2k+4)=8k(k+1)(k+2) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2)(2k+4) chia hết cho 16 (1)
k(k+1)(k+2) chia hết cho 3 suy ra 8k(k+1)(k+2) chia hết cho 3 suy ra 2k.(2k+2)(2k+4) chia hết cho 3 (2)
từ (1),(2) suy ra 2k.(2k+2)(2k+4) chia hết cho 48 do (16,3)=1
câu c, tương tự vậy
ASDWE RHTYJNHWSAVFGB
1.Chứng tỏ rằng :
a) Tích của 2 số tự nhiên liên tiếp chia hết cho 2.
b) ' ' ' ' ' ' ' cho 6.
c) Tích của 2 số chẵn liên tiếp chia hết cho 8.
d) Tích của 4 số tự nhiên 1+ chia hết cho 24
a Gọi 2 số tự nhiên la k và k+2
ta có k.(k+2)=k2+2k
Nếu k:2 => k2:2=>2k:2
=>(k2+2k):2
Nếu k ko chia hết cho 2
k2là số lẻ =.2k la số lẻ
Mà số lẻ + số lẻ = số chẵn
=>(k2+2k):2
Chứng tỏ rằng:
a trong 2 số tự nhiên liên tiếp có một số chia hết cho 2
b Trong 3 số tự nhiên liên tiếp có một số chia hết cho 3
c Tổng của 3 số tự nhiên liên tiếp là một số chia hết cho 3
d Tổng của 4 số tự nhiên liên tiếp là một số không chia hết cho 4
e Tích của hai số chẵn liên tiếp chia hết cho 8
a) Ta có : 2 số tự nhiên liên tiếp là : 2k và 2k + 1 trong đó 2k chia hết cho 2
b) Ta có : 3 số tự nhiên liên tiếp là 3k ; 3k + 1 và 3k + 2 trong đó 3k chia hết cho 3
c) Ta có : 3 số tự nhiên liên tiếp là 3k ; 3k + 1 và 3k + 2
3k + 3k + 1 + 3k + 2 = ( 3k + 3k + 3k ) + ( 2 + 1 ) = 9k + 3
\(\hept{\begin{cases}9k⋮3\\3⋮3\end{cases}\Rightarrow\left(9k+3\right)⋮3}\)
d) Tương tự
Có ai muốn làm bạn tình cùng tôi ko