Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Linh
Xem chi tiết
Mai Nguyễn Bảo Ngọc
Xem chi tiết
Lê Thảo Linh
Xem chi tiết
Tran quốc tuấn
Xem chi tiết
Trương Xuân Quyên
Xem chi tiết
Khải Nhi
29 tháng 6 2016 lúc 21:06

ét tam giác DBC có : 
góc B = 90 độ ( BD vuông góc BC) 
BD=BC 
=> tam giác DBC là tam giác vuông cân => góc C =góc BDC= 45 độ 
xét hình thang ABCD có : 
góc ABC = 360 độ - ( 90 dộ+90 độ+45 độ) = 135 độ 
b) ta có : 
góc ABD = góc ABC - góc DBC = .135 độ - 90 độ = 45 độ 
BD = cos ABD . AB = cos 45 độ . 3 = ......cm 
mà BD=BC=> BC =.....cm 
xét tam giác vuông cân DBC có 
CD^2= BC^2 + BD^2 (định lí pi-ta-go) 
<=>................. 
<=>................. 
=> CD =........cm

Đại Ma Vương
Xem chi tiết
Nguyễn Vũ Mỹ An
Xem chi tiết
Đoàn Đức Hà
12 tháng 7 2021 lúc 21:28

a) Xét tam giác \(ADC\)vuông tại \(D\)

\(tan\widehat{ACD}=\frac{AD}{DC}=\frac{1}{2}\Rightarrow\widehat{ACD}=arctan\frac{1}{2}\)

b) Xét tam giác \(ADC\)vuông tại \(D\)

\(AC^2=AD^2+DC^2=AD^2+4AD^2=5AD^2\)

\(\Leftrightarrow AD=\sqrt{\frac{AC^2}{5}}=\sqrt{\frac{25^2}{5}}=5\sqrt{5}\left(cm\right)\)

\(AB=AD=5\sqrt{5}\left(cm\right),CD=2AD=10\sqrt{5}\left(cm\right)\).

c) Xét tam giác \(ADC\)vuông tại \(D\)

\(DH=\frac{AD.DC}{AC}=\frac{10\sqrt{5}.5\sqrt{5}}{25}=10\left(cm\right)\)

\(AH=\frac{AD^2}{AC}=\frac{AB^2}{AC}\Leftrightarrow\frac{AB}{AC}=\frac{AH}{AB}\)

Xét tam giác \(ABH\)và tam giác \(ACB\):

\(\widehat{A}\)chung

\(\frac{AB}{AC}=\frac{AH}{AB}\)

suy ra \(\Delta ABH~\Delta ACB\left(c.g.c\right)\)

\(\Rightarrow\widehat{ABH}=\widehat{ACB}\)

Khách vãng lai đã xóa
tranhuuphuoc
Xem chi tiết
Steolla
2 tháng 9 2017 lúc 10:14

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

Tuyết Phương
Xem chi tiết