Cho a, b, c>0 và a + b + c = 4. CMR: a + b lớn hơn hoặc bằng abc. Dấu "=" xảy ra khi nào?
CMR với mọi a,b thuộc Z,ta có:
a) Ia+bI nhỏ hơn hoặc bằng IaI+IbI
dấu = xảy ra khi a.b lớn hơn hoặc bằng 0.
b)Ia-bI lớn hơn hoặc bằng IaI-IbI
dấu = xảy ra khi a.b lớn hơn hoặc bằng 0
A) Cho a>0 , b>0. Cmr : a+b >=2√ab . Dấu = xảy ra khi nào?
B) Cho biết x>2 , cmr : x + 4/x - 2 >= 6 . Dấu = xảy ra khi nào?
C) Cho a, b>0 , chứng minh (a+b) (1/a + 1/b) >= 4. Dấu = xảy ra khi nào?
c) Áp dụng BĐT cô si cho 2 hai số dương \(a;b\) ta có:
\(a+b\ge2\sqrt{ab}\)
\(\frac{1}{a}+\frac{1}{b}\ge\frac{1}{\sqrt{ab}}\)
\(\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Dấu "=" xảy ra khi \(\Leftrightarrow a=b\)
a)CMR: 1/xy <= 1/4((1/x)+(1/y)) với mọi x, y>0. Dấu "=" xảy ra khi nào?
b)Cho a, b, c>0 và abc=ab+bc+ca. CMR: (1/(a+2b+3c))+(1/(2a+3b+c))+(1/(3a+b+2c))>=3/16
b)
Đề: Cho a, b, c > 0 và abc = ab + bc + ca. Chứng minh rằng: \(\frac{1}{a+2b+3c}+\frac{1}{2a+3b+c}+\frac{1}{3a+b+2c}\le\frac{3}{16}\)
~ ~ ~ ~ ~
\(abc=ab+bc+ca\)
\(\Leftrightarrow1=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Áp dụng BĐT \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\), ta có:
\(\frac{1}{a+2b+3c}+\frac{1}{2a+3b+c}+\frac{1}{3a+b+2c}\)
\(\le\frac{1}{4}\left(\frac{1}{a+c}+\frac{1}{2\left(b+c\right)}+\frac{1}{2\left(a+b\right)}+\frac{1}{b+c}+\frac{1}{2\left(a+c\right)}+\frac{1}{a+b}\right)\)
\(=\frac{1}{4}\left[\frac{3}{2\left(a+c\right)}+\frac{3}{2\left(b+c\right)}+\frac{3}{2\left(a+b\right)}\right]\)
\(=\frac{3}{8}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{a+b}\right)\)
\(\le\frac{3}{32}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=\frac{3}{16}\) (đpcm)
Dấu "=" xảy ra khi a = b = c
cho a, b là các số nguyên. Chứng minh rằng 10a^2+5b^2+12ab+4a-6b+13 lớn hơn hoặc bằng 0. Dấu = xảy ra khi nào?
1/Cho a,b thuộc Z. C/m I a+b I bé hơn hoặc bằng I a I + I b I
Khi nào có dấu =
2/Áp dụng
Cho x thuộc Q , y thuộc Q
C/m I x+yI bé hơn hoặc bằng I x I + I yI
Dấu = xảy ra khi nào
la+bl2=(a+b)2=a2+2ab+b2
(lal+lbl)2=a2+2labl+b2
mà 2labl \(\ge\)2ab
=>la+bl2\(\le\)(lal+lbl)2
=>la+bl\(\le\)lal+lbl
dấu bằng xảy ra khi ab\(\ge0\)
B1:Cho a>0, a2=bc
a+b+c=abc
Cmr:
a lớn hơn hoặc bằng căn3,b>0,c>0,b2+c2 lớn hơn hoặc bằng 2a2
B2: Cho hệ
a2+b2+c2=2
ab+bc+ca=1
Cmr: a,b,c thuộc {-4/3;4/3}
B2: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=4\)
\(\Rightarrow\orbr{\begin{cases}a+b+c=2\\a+b+c=-2\end{cases}}\)
TH1: \(a+b+c=2\Rightarrow c=2-\left(a+b\right)\)
\(a^2+b^2+c^2=2\)\(\Leftrightarrow a^2+b^2+\left(2-a-b\right)^2=2\)
\(\Leftrightarrow a^2+b^2+ab-2\left(a+b\right)+1=0\)
\(\Leftrightarrow a^2+\left(b-2\right)a+b^2-2b+1=0\)
Xem đây là một phương trình bậc hai ẩn a, tham số b.
Để tồn tại a thỏa phương trình trên thì \(\Delta\ge0\)
\(\Leftrightarrow\left(b-2\right)^2-4\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow b\left(3b-4\right)\le0\)\(\Leftrightarrow0\le b\le\frac{4}{3}\)
Do vai trò của a, b, c là như nhau nên \(0\le a,b,c\le\frac{4}{3}\)
(hoặc đổi biến thành b và tham số a --> CM được a, rồi thay \(b=2-c-a\) sẽ chứng minh được c)
TH2: \(a+b+c=-2\) --> tương tự trường hợp 1 nhưng kết quả sẽ là
\(-\frac{4}{3}\le a,b,c\le0\)
Kết hợp 2 trường hợp lại, ta có đpcm.
Cho phân số a/b và c/d biết a,b,c,d thuộc z và b,d khác 0
a, CMR a/b=c/d khi và chỉ khi a.d=b.c
b, a/b lớn hơn hoặc bằng c/d khi và chỉ khi ab lớn hơn hoặc bằng b.c
C, a/b bé hơn hoặc bằng c/d khi và chỉ khi ad bé hơn hoặc bằng cb
chứng minh:
(a+b)2 lớn hơn hoặc bằng 4ab
dấu bằng xảy ra khi nào
cho các số a,b,c >0 thỏa mãn \(abc\le1\)
CMR \(\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\ge a+b+c\)dấu = xảy ra khi nào ?
vì a, b, c > 0 nên áp dụng bất đẳng thức Cô-si ta có:
\(\frac{a}{c}+\frac{a}{c}+\frac{c}{b}\ge3\sqrt[3]{\frac{a^2}{bc}}=3a\) (vì \(abc\le1\Rightarrow\frac{1}{bc}\ge a\))
tương tự: \(\frac{b}{a}+\frac{b}{a}+\frac{a}{c}\ge3b\); \(\frac{c}{b}+\frac{c}{b}+\frac{b}{a}\ge3c\)
\(\Rightarrow3\left(\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\right)\ge3\left(a+b+c\right)\Leftrightarrowđpcm\)