Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Trọng Chương
Xem chi tiết
Frisk
20 tháng 9 2017 lúc 21:00

do \(|^{ }_{ }x+5|^{ }_{ }\ge x+5\)

\(\Rightarrow|^{ }_{ }x+5|^{ }_{ }+2-x\ge x+5+2-x\)

\(\Rightarrow A\ge7\)

\(\Rightarrow\)giá trị nhỏ nhất của A=7

nguyen thi thu hoai
22 tháng 9 2017 lúc 20:52

Có I x + 5 I \(\ge\) 0 với mọi x

\(\Rightarrow\)I x + 5 I + 2 - x \(\ge\) 2 - x với mọi x

Dấu " = " xảy ra \(\Leftrightarrow\) I x + 5 I = 0

                                   \(\Rightarrow\) x = - 5

Vậy A đạt gtnn là 2 - x khi x = -5

Mình ko chắc có đúng ko nên ai thấy lời giải của mk sai thì góp ý nha

       

nguyen thi thu hoai
22 tháng 9 2017 lúc 20:58

Mk xin lỗi nhé cách làm này mới đúng : 

Có I x + 5 I \(\ge\) x + 5

\(\Rightarrow\) I x + 5 I + 2 - x \(\ge\) x + 5 + 2 - x

                    A            \(\ge\) 7

Dấu " = " xảy ra \(\Leftrightarrow\) I x + 5 I = x + 5

 \(\Rightarrow\) x + 5 \(\ge\) 0

\(\Rightarrow\) x \(\ge\) -5

Vậy A đạt gtnn khi x \(\ge\) -5

Lê Trọng Chương
Xem chi tiết
Lê Trọng Chương
Xem chi tiết
Đinh Đức Hùng
21 tháng 9 2017 lúc 13:15

Cần cm : \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

\(\Leftrightarrow\left(\left|a\right|+\left|b\right|\right)^2\ge\left(\left|a+b\right|\right)^2\Leftrightarrow a^2+2\left|ab\right|+b^2\ge a^2+2ab+b^2\)

\(\Leftrightarrow\left|ab\right|\ge ab\) (luôn đúng; dấu "=" xảy ra \(\Leftrightarrow ab\ge0\))

Áp dụng ta có :

\(A=\left|x+3\right|+5\left|6x+1\right|+\left|x-1\right|+3=\left(\left|x+3\right|+\left|1-x\right|\right)+5\left|6x+1\right|+3\)

\(\ge\left|x+3+1-x\right|+5\left|6x+1\right|+3=5\left|6x+1\right|+7\ge7\) có GTNN là 7

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+3\right)\left(1-x\right)\ge0\\\left|6x+1\right|=0\end{cases}\Rightarrow x=-\frac{1}{6}\left(TM\right)}\)

vẬY \(D_{min}=7\) khi \(x=-\frac{1}{6}\)

nguyen phuong
Xem chi tiết
Nguyễn Đức Duy
Xem chi tiết
Nguyễn thành Đạt
13 tháng 9 2023 lúc 23:01

Ta có : \(P=\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+xz+2x^2}\)

Xét : \(\sqrt{2x^2+xy+2y^2}=\sqrt{\dfrac{3}{4}.\left(x-y\right)^2+\dfrac{5}{4}.\left(x+y\right)^2}\)

\(\ge\sqrt{\dfrac{5}{4}.\left(x+y\right)^2}=\dfrac{\sqrt{5}}{2}.\left(x+y\right)\)

\(CMTT:\sqrt{2y^2+yz+2z^2}\ge\dfrac{\sqrt{5}}{2}.\left(y+z\right)\)

                \(\sqrt{2z^2+xz+2x^2}\ge\dfrac{\sqrt{5}}{2}.\left(x+z\right)\)

Do đó : \(P\ge\dfrac{\sqrt{5}}{2}.\left(x+y+y+z+z+x\right)=\dfrac{2\sqrt{5}.\left(x+y+z\right)}{2}\)

\(\Rightarrow P\ge\sqrt{5}.\left(x+y+z\right)\)

Ta có : BĐT : \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Rightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)

Mà : \(xy+yz+zx=3\)

\(\Rightarrow\left(x+y+z\right)^2\ge9\)

\(\Leftrightarrow x+y+z\ge3\)

\(\Rightarrow P_{min}=3\sqrt{5}\)

Dấu bằng xảy ra : \(\Leftrightarrow x=y=z=1\)

Lê Trọng Chương
Xem chi tiết
Lê Trọng Chương
Xem chi tiết