Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 8 2017 lúc 10:49

Tính: S=1/6+1/66+1/176+1/336+...
1/6= 1/1x6; 1/66= 1/6 x11; đại loại thế
Số hạng thứ 100 là: 1 +5 x(100-1)=496.
Phân số thứ 100 là:1/496 x501
Dãy đầy đủ là: S=1/1x6+1/6x11+1/11x 16+...+1/496x501
Nhân 2 vế S với 5
Sx5 =5/1x6+5/6x11+5/11x 16+...+5/496x501= 1/1-1/501=500/501
S= 100/501

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 6 2018 lúc 7:36

Bài 1: A= 1x2+2x3+3x4+...+98x99 A x 3= 1x2 x (3-0) +2x3x (4-1)+3x4 x (5-2)+...+98x99x (100-97) = 1x2x3+2x3x4+......98x99x100- (1x2x0+ 2x3x1+....+ 98x99x97) = 98x99x100. Bài 2: Tính: S=1/6+1/66+1/176+1/336+... 1/6= 1/1x6; 1/66= 1/6 x11; đại loại thế Số hạng thứ 100 là: 1 +5 x(100-1)=496. Phân số thứ 100 là:1/496 x501 Dãy đầy đủ là: S=1/1x6+1/6x11+1/11x 16+...+1/496x501 Nhân 2 vế S với 5 Sx5 =5/1x6+5/6x11+5/11x 16+...+5/496x501= 1/1-1/501=500/501 S= 100/501

ngo thừa ân
Xem chi tiết
Chun ni bun ti
Xem chi tiết
Đặng Tú Phương
Xem chi tiết
Phùng Quang Thịnh
17 tháng 6 2017 lúc 14:36

Ta gọi số thứ 100 là \(\frac{1}{x}\)
Ta có tổng :
\(\frac{1}{6}+\frac{1}{66}+\frac{1}{176}+\frac{1}{336}+...+\frac{1}{x}\)
\(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+\frac{1}{16.21}+...+\frac{1}{x}\)
Ta có công thức : \(U_n=U_1+\left(n-1\right).d\)
Vậy ta áp dụng : \(U_{100}=1+\left(100-1\right).5=496\)
=) Số thứ 100 là \(\frac{1}{496.\left(496+5\right)}=\frac{1}{496.501}\)
Ta có tổng của 100 số hạng đầu tiên là :
\(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+\frac{1}{16.21}+...+\frac{1}{496.501}\)
\(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{496}-\frac{1}{501}\)
\(1-\frac{1}{501}=\frac{500}{501}\)
Vậy tổng của 100 số hạng đầu tiên của dãy phân số trên là : \(\frac{500}{501}\)

xKraken
1 tháng 4 2019 lúc 11:17

Ta nhận thấy:

\(\frac{1}{6};\frac{1}{66};\frac{1}{176};\frac{1}{336}\) = \(\frac{1}{1\times6};\frac{1}{6\times11};\frac{1}{11\times16};\frac{1}{16\times21}\)

PS thứ 1 có TS thứ nhất của MS là: 1

PS thứ 2 có TS thứ nhất của MS là: 6

PS thứ 3 có TS thứ nhất của MS là: 11

PS thứ 4 có TS thứ nhất của MS là: 16

Vậy PS thứ 100 có TS thứ nhất của MS là: 1 + (100 - 1) x 5 = 496

Vậy TS thứ hai của MS là: 501

Ta có:

\(\frac{1}{1\times6}+\frac{1}{6\times11}+\frac{1}{11\times16}+....+\frac{1}{496\times501}\)

\(1-\frac{1}{501}=\frac{500}{501}\)

Chúc bạn học tốt !!!

Lê Hải Dương
Xem chi tiết
nguyễn thị ánh ngọc
12 tháng 8 2015 lúc 7:17

100/501

**** cho mình nhé bạn Lê Hải Dương

lê thi tra my
12 tháng 8 2015 lúc 7:27

1/1.6 +1/6.11+1/11.16+....

số thứ 100 có dạng 1/(496.501)

do vậy  tổngtrên bằng 1/5 (1/1-1/501) = 100/501

 **** mình nha bạn

 

Nguyen Ha Duy Anh
22 tháng 4 2017 lúc 20:47

100/501

Đỗ Bích Ngọc
Xem chi tiết
Lương Bích Đào
31 tháng 1 2017 lúc 18:42

ý b bằng 100/501

ý c bằng 100/101

Đỗ Bích Ngọc
1 tháng 2 2017 lúc 20:03

Giải rõ ra chứ

duong minh duc
Xem chi tiết
Trần Khởi My
Xem chi tiết
Mai Duy Bách
Xem chi tiết
Phan Thanh Tịnh
19 tháng 9 2016 lúc 22:37

Các mẫu các số hạng là tích của 2 số cách nhau 5 đơn vị (6 = 1.6 ; 66 = 6.11 ; 176 = 11.16 ; 336 = 16.21;...).

Cho dãy gồm các thừa số I của các tích bên : 1 ; 6 ; 11 ; 16 ; ...Số hạng thứ 100 của dãy này là : 1 + 5(100 - 1) = 496

Vậy tổng của 100 số hạng đầu tiên của dãy đã cho là :

\(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+...+\frac{1}{491.496}+\frac{1}{496.501}\)\(=\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+..+\frac{5}{491.496}+\frac{5}{496.501}\right):5\)

\(=\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{491}-\frac{1}{496}+\frac{1}{496}-\frac{1}{501}\right):5\)

\(=\left(1-\frac{1}{501}\right):5=\frac{500}{501}:5=\frac{100}{501}\)

Đinh Sỹ Bảo
12 tháng 3 2017 lúc 8:04

100/501

Đàm Nguyễn Sơn
12 tháng 3 2017 lúc 8:11

bang 100/501