\(\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+....+\frac{1}{1280}\) làm thế nào
\(\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+....+\frac{1}{1280}\)
\(Tínhnhanh:\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+....+\frac{1}{1280}\)
\(\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+........+\frac{1}{1280}\)
\(=\frac{1}{5}+\left(\frac{1}{5}-\frac{1}{10}\right)+\left(\frac{1}{10}-\frac{1}{20}\right)+.....+\left(\frac{1}{640}-\frac{1}{1280}\right)\)
\(=\frac{1}{5}+\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{20}+......+\frac{1}{640}-\frac{1}{1280}\)
\(=\frac{1}{5}+\frac{1}{5}-\frac{1}{1280}\)( Tối giản các phân số cho nhau )
\(=\frac{2}{5}-\frac{1}{1280}\)
\(=\frac{511}{1280}\)
Tính nhanh: \(\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+....+\frac{1}{1280}\)
\(\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+...+\frac{1}{1280}\)
\(=\left(\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+...+\frac{1}{1280}\right)\cdot5\cdot\frac{1}{5}\)
\(=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}\right)\cdot\frac{1}{5}\)
\(=\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...-\frac{1}{256}\right)\cdot\frac{1}{5}\)
\(=\left(1+1-\frac{1}{256}\right)\cdot\frac{1}{5}\)
\(=\left(2-\frac{1}{256}\right)\cdot\frac{1}{5}\)
\(=\frac{511}{256}\cdot\frac{1}{5}\)
\(=\frac{511}{1280}\)
\(\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+...+\frac{1}{1280}=\frac{1}{x-2}\)
\(\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+...+\frac{1}{128}=\frac{1}{x-2}\)
\(\Leftrightarrow\frac{1}{10\cdot1}+\frac{1}{10\cdot2}+\frac{1}{10\cdot3}+\frac{1}{10\cdot4}+...+\frac{1}{10\cdot128}=\frac{1}{x-2}\)
\(\Leftrightarrow\frac{1}{10}\cdot\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}\right)=\frac{1}{x-2}\)
Đặt \(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}\)
\(2A=2+1+\frac{1}{2}+...+\frac{1}{2^6}\)
\(2A-A=2-\frac{1}{2^7}\)
Thay vào biểu thức ta có :
\(\frac{1}{10}\cdot\left(2-\frac{1}{2^7}\right)=\frac{1}{x-2}\)
\(\Leftrightarrow\frac{1}{10}\cdot\frac{255}{128}=\frac{1}{x-2}\Leftrightarrow\frac{51}{256}=\frac{1}{x-2}\)
\(\Leftrightarrow51x-102=256\)
\(51x=358\Rightarrow x=\frac{358}{51}\)
Vậy ..................................
Hãy tính bằng cách hợp lí;\(\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+......+\frac{1}{1280}\)
Ai đúng mị tick cho
mình cho bạn đó bạn đồng ý nhận lời mời kết bạn từ mình nha!!!!
cho j zậy bạn
\(\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+......+\frac{1}{1280}\)
\(=\frac{1}{5}\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{128}+\frac{1}{256}\right)\)
\(=\frac{1}{5}\left[1+\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{8}\right)+...+\left(\frac{1}{64}-\frac{1}{128}\right)+\left(\frac{1}{128}-\frac{1}{256}\right)\right]\)
\(=\frac{1}{5}\left[1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...+\frac{1}{64}-\frac{1}{128}+\frac{1}{128}-\frac{1}{256}\right]\)
\(=\frac{1}{5}\left(2-\frac{1}{256}\right)\)
\(=\frac{511}{1280}\)
\(\frac{1}{5}\)+ \(\frac{1}{10}\)+ \(\frac{1}{20}\)+ \(\frac{1}{40}\)+...+ \(\frac{1}{1280}\)+ \(\frac{1}{2560}\)
Trình bày cách làm hộ mình nhé ^_^
Gọi tổng trên là A
Ta có : \(A=\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+...+\frac{1}{2560}\)
\(2A=2\left(\frac{1}{5}+\frac{1}{10}+...+\frac{1}{2560}\right)\)
\(2A=\frac{2}{5}+\frac{1}{5}+\frac{1}{10}+...+\frac{1}{1280}\)
\(2A-A=\left(\frac{2}{5}+\frac{1}{5}+...+\frac{1}{1280}\right)-\left(\frac{1}{5}+\frac{1}{10}+...+\frac{1}{2560}\right)\)
\(A\left(2-1\right)=\frac{2}{5}-\frac{1}{2560}\)
\(A.1=\frac{1024}{2560}-\frac{1}{2560}\)
\(A=\frac{1023}{2560}\)
Ta có : A = 1/5 + 1/10 + 1/20 + ... + 1/2560
2A = 2 ( 1/5 + 1/10 + ... + 1/2560 )
2A = 2/5 + 1/5 + 1/10 + .. + 1/2560
2A - A = ( 2/5 + 1/5 + ... + 1/1280 ) - ( 1/5 + 1/10 + ... + 1/2560 )
A = 2 - 1 = 2/5 - 1/2560
A.1 = 1024/2560 - 1/2560
A = 1023 = 2560
\(\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+.........+\frac{1}{1280}?\)
lời giải chi tiết nha , mình đang cần gấp
A = 1/5 + 1/10 + 1/20 + 1/40 + ..... + 1/1280
A x 2 = 2/5 - ( 1 /5 + 1/10 + 1/20 + 1/40 + ... + 1/1280 ) - 1/1280
A x 2 = 2/5 - A - 1/1280
A x 2 - A = 2/5 - 1/1280
A = 2/5 - 1/1280
A = 511/1280
A = 1/5 + 1/10 + 1/20 + 1/40 + ..... + 1/1280
A x 2 = 2/5 - ( 1 /5 + 1/10 + 1/20 + 1/40 + ... + 1/1280 ) - 1/1280
A x 2 = 2/5 - A - 1/1280
A x 2 - A = 2/5 - 1/1280
A = 2/5 - 1/1280
A = 511/1280
\(=\frac{1}{5}+\frac{1}{5}\cdot\frac{1}{2}+\frac{1}{5}\cdot\frac{1}{2^2}+\frac{1}{5}\cdot\frac{1}{2^3}+...+\frac{1}{5}\cdot\frac{1}{2^8}\)
\(=\frac{1}{5}\cdot\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^8}\right)=\frac{1}{5}\cdot2\cdot\left(1-\frac{1}{2}\right)\cdot\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^8}\right)\)
\(=\frac{2}{5}\cdot\left(1-\frac{1}{2^9}\right)=\frac{2\cdot\left(2^9-1\right)}{5\cdot2^9}=\frac{511}{1280}\)
Tìm \(x\)biết:
\(a,\)\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=1\frac{2005}{2007}\)
\(b,\)\(\left[\frac{6:\frac{3}{5}-1\frac{1}{16}.\frac{3}{7}}{4.\frac{1}{5}.\frac{10}{11}+5\frac{2}{11}}-\frac{\left(\frac{3}{20}+\frac{1}{2}-\frac{1}{5}\right).\frac{12}{49}}{3\frac{1}{3}+\frac{2}{8}}\right].x=2\frac{23}{96}\)
Bạn nào làm nhanh và đầy đủ nhất thì mình tik cho
\(B=\frac{\left(\frac{3}{10}-\frac{4}{15}-\frac{7}{20}\right).\frac{-5}{19}}{\left(\frac{1}{14}+\frac{1}{7}-\frac{-3}{35}\right).\frac{4}{3}}\)tính B nha các bạn. giải thích rỗ ràng cách làm. bạn nào nhanh nhất sẽ nhận 1 sao của mình. thank.