2 số : 2^2017 và 5^2017 viết liên tiếp trong hệ thập phân có bao nhiêu chữ số
2^2017 và 5^2017 viết liên tiếp trong hệ thập phân có bao nhiêu số
Viết liên tiếp số 2^2017và 5^2017 liền nhau thành 1 số có bao nhiêu chữ số
Tìm n biết 5^n và 2^n viết liên tiếp trong hệ thập phân có 1000 chữ số
Viết hai số 22010 và 52016 liên tiếp nhau trong biểu diễn thập phân , ta được một số . Hỏi số này có bao nhiêu chữ số
Tìm số chữ số của a biết a là viết liên tiếp của 2 số 22017 và 52017.
Viết các số liên tiếp từ 1 --> 2017 cần bao nhiêu chữ số 5 ?
602 nha 10000000000000000%
nhớ tk nha......
từ 1=> 999 (trừ từ 500=>599) có
21*9=189( chữ số 5)
số chữ số 5 từ 1=>999 là
189+21+100=300(chữ số 5)
từ 1=>2000 có
300*2=600(chữ số 5)
từ 2000=>2017 có 2 cs 5
vậy có tất cả
600+5=605(chữ số)
k minh nha
a)Số A=\(4^6\)\(.5^3\)có bao nhiêu chữ số viết trong hệ thập phân.
b) Số \(2^{100}\)có bao nhiêu chữ số viết trong hệ thập phân.
c) 2 số \(2^{2015}\)và\(5^{2015}\)khi viết gần nhau tạo thành số có bao nhiêu chữ số trong hệ thập phân
Cho N = 9999...999 ( 2017 chữ số 9 )
Hỏi trong cách viết thập phân của N^3 có bao nhiêu chữ số 9?
Tìm \(3\) chữ số tận cùng bên phải khi viết số \(2016^{2017}\) trong hệ thập phân.
Ta có \(2016^{2017}=\left(2000+16\right)^{2017}\) \(=1000P+16^{2017}\)
Suy ra 3 chữ số tận cùng của số đã cho chính là 3 chữ số tận cùng của \(N=16^{2017}\).
Dễ thấy chữ số tận cùng của N là 6.
Ta tính thử một vài giá trị của \(16^n\):
\(16^1=16;16^2=256;16^3=4096;16^4=65536\)\(;16^5=1048576\); \(16^6=16777216\);...
Từ đó ta có thể dễ dàng dự đoán được quy luật sau: \(16^{5k+2}\) có chữ số thứ hai từ phải qua là 5 với mọi số tự nhiên k. (1)
Chứng minh: (1) đúng với \(k=0\).
Giả sử (*) đúng đến \(k=l\ge0\). Khi đó \(16^{5l+2}=100Q+56\). Ta cần chứng minh (1) đúng với \(k=l+1\). Thật vậy, \(16^{5\left(l+1\right)+2}=16^{5l+2}.16^5\) \(=\left(100Q+56\right)\left(100R+76\right)\) \(=10000QR+7600Q+5600R+4256\) có chữ số thứ hai từ phải qua là 5.
Vậy (*) đúng với \(k=l+1\), vậy (*) được chứng minh. Do \(N=16^{2017}=16^{5.403+2}\) nên có chữ số thứ 2 từ phải qua là 5.
Ta lại thử tính một vài giá trị của \(16^{5k+2}\) thì thấy:
\(16^2=256;16^7=...456;16^{12}=...656;16^{17}=...856;...\)
Ta lại dự đoán được \(16^{25u+17}\) có chữ số thứ 3 từ phải sang là 8 với mọi số tự nhiên \(u\). (2)
Chứng minh: (2) đúng với \(u=0\)
Giả sử (2) đúng đến \(u=v\ge0\). Khi đó \(16^{25u+17}=1000A+856\). Cần chứng minh (2) đúng với \(u=v+1\). Thật vậy:
\(16^{25\left(u+1\right)+17}=16^{25u+17}.16^{25}\) \(=\left(1000A+856\right)\left(1000B+376\right)\)
\(=1000C+321856\) có chữ số thứ 3 từ phải sang là 856.
Vậy khẳng định đúng với \(u=v+1\) nên (2) được cm.
Do đó \(N=16^{2017}=16^{25.80+17}\) có chữ số thứ 3 từ phải qua là 8.
Vậy 3 chữ số tận cùng bên phải của số đã cho là \(856\)