Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thị Thu Huệ
Xem chi tiết
Nguyễn Thị Hồng Nhung
17 tháng 9 2017 lúc 9:27

Sửa đề nhé:Chứng minh số đó ko chia hết cho 27

Ta có:\(A=3333...3\)(n chứ số 3)

\(=3.1111...1\)(n chữ số 1)

Để A chia hết cho 27 thì A chia hết ch 3 và 9

\(3.11...111⋮3\)\(3.111...1⋮̸9\) nên \(A⋮̸27\left(đpcm\right)\)

Huỳnh Thiên Tân
Xem chi tiết
Nguyen Minh Viet Hoang
17 tháng 9 2017 lúc 10:47

Ta có A=99999....99999

mà ta có A chia hết cho 27

nên a chia hết cho 3 và 9

Mà 999...9999 chia hết cho 3 và 9

=> A chia hết cho 27

Lê Thị Thu Huệ
Xem chi tiết
Dang Thi Lien
Xem chi tiết
jennyfer nguyen
Xem chi tiết
Vũ Anh Quân
20 tháng 10 2016 lúc 19:30

a,Nếu n = 3k thì n² + 1 = (3k)² + 1 = 9k² + 1 chia 3 dư 1 
Nếu n = 3k + 1 thì n² + 1 = (3k + 1)² + 1 = 9k² + 6k + 2 chia 3 dư 2 
Nếu n = 3k + 2 thì n² + 1 = (3k + 2)² + 1 = 9k² + 12k + 5 chia 3 dư 2 
Vậy vớj mọj n thuộc Z, n^2 + 1 không chia hết cho 3

b,chọn n=1 => 10+18-1=27 chia hết cho 27 (luôn đúng) 
giả sử với mọi n=k (k thuộc N*) thì ta luôn có 10^k+18k-1 chia hết cho 27. 
Cần chứng minh với n=k+1 thì 10^(k+1)+18(k+1)-1 chia hết cho 27. 
Ta có 10^(k+1)+18(k+1)-1= 10*10^k+18k+18-1 
= (10^k+18k-1)+9*10^k+18 
= (10^k+18k-1)+9(10^k+2) 
ta có: (10^k+18k-1) chia hết cho 27 => 10^(k+1)+18(k+1)-1 chia hết cho 27 khi và chỉ khi 9(10^k+2) chia hết cho 27. 

Chứng minh 9(10^k+2) chia hết cho 27. 
chọn k=1 => 9(10+2)=108 chia hết cho 27(luôn đúng) 
giả sử k=m(với m thuộc N*) ta luôn có 9(10^m+2) chia hết cho 27. 
ta cần chứng minh với mọi k= m+1 ta có 9(10^(m+1)+2) chia hết cho 27. 
thật vậy ta có: 9(10^(m+1)+2)= 9( 10*10^m+2)= 9( 10^m+9*10^m+2) 
= 9(10^m+2) +81*10^m 
ta có 9(10^m+2) chia hết cho 27 và 81*10^m chia hết cho 27 => 9(10^(m+1)+2) chia hết cho 27 
=>9(10^k+2) chia hết cho 27 
=>10^(k+1)+18(k+1)-1 chia hết cho 27 
=>10^n+18n-1 chia hết cho 27=> đpcm

K MINH NHA!...............

Nguyễn Đức Minh
10 tháng 5 2022 lúc 14:09

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

nguyen quynh
Xem chi tiết
Lê Thị Bích Tuyền
19 tháng 7 2015 lúc 9:10

1.

dấu hiệu chia hết cho 11: một số chia hết cho 11 khi và chỉ khi :tổng các chữ số hàng chẵn-tổng các chữ số hàng lẻ chia hết cho 11

theo giả thiết:/ab+/cd+/eg = 10a + b + 10c + d + 10e + g = 11(a+c+e) + (b+d+g) - (a+c+e) chia hết cho 11

suy ra: (b+d+g) - (a+c+e) chia hết cho 11

suy ra : /abcdeg chia hết cho 11

2.

abcdeg = abc.1000+deg = abc.994 +abc.6 +deg
= abc.994 + abc.6 - 6deg +7deg =abc.994 + 6.(abc - deg) +7deg
Vì abc.994=abc.7.142 chia hết cho 7
abc - deg chia hết cho 7 =>6.(abc - deg ) chia hết cho 7
7.deg chia hết cho 7
Từ 3 ý trên =>abc.994 +6.(abc - deg) + 7deg chia cho 7
vậy abcdeg chia hết cho 7

 

Phạn Nhạt Min
8 tháng 3 2016 lúc 21:20

chet minh ko bit tra loi

Lê Sỹ Long Nhật
14 tháng 8 2016 lúc 20:02

I don't know !!!!

anna pham
Xem chi tiết

có cần gấp nữa không bạn !

Khách vãng lai đã xóa
Vu Nguyen Bao Ngoc
Xem chi tiết
nguyễn văn nam
Xem chi tiết