C/m rằng từ tỉ lệ thức a/b=c/d ta suy ra đc
ab/cd=(a-b)^2/(c-d)^2
chứng tỏ rằng từ tỉ lệ thức a/b=c/d suy ra tỉ lệ thức a^2/c^2=ab/cd
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Đặt \(\frac{a}{c}=\frac{b}{d}=k\)
\(\Rightarrow\left(\frac{a}{c}\right)^2=k^2;\frac{a}{c}.\frac{b}{d}=k^2\Rightarrow\frac{a^2}{c^2}=\frac{ab}{c\text{d}}\left(=k^2\right)\)
(Bạn xem cách trình bày có hợp lý không giúp mình nha!)
a/b=c/d
suy ra a.d=b.c
a.d.ac=b.c.ac
a^2.cd=c^2.ab
suy ra a^2/c^2=ab/cd
Chứng minh rằng từ tỉ lệ thức ab=cd(a−b≠0,c−d≠0)ab=cd(a−b≠0,c−d≠0) ta có thể suy ra tỉ lệ thức a+ba−b=c+dc−da+ba−b=c+dc−d
Chứng minh rằng từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)ta suy ra được tỉ lệ thức \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}và\left(\frac{a+b}{c+d}\right)^2=\frac{ab}{cd}\)
Giả sử tất cả các tỷ lệ thức đều có nghĩa.
Từ: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
Và suy ra: \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\)
Và Từ: \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\)
Chứng minh rằng từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\), ta có thể suy ra tỉ lệ thức \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}và\frac{ac}{bd}=\frac{a^2-c^2}{b^2-d^2}\)
Giả sử tất cả các tỷ lệ thức đều có nghĩa.
Từ: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}=\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\)
Tương tự từ tỷ lệ thức ban đầu \(\frac{a}{b}=\frac{c}{d}\)cũng suy ra: \(\frac{ac}{bd}=\frac{a^2-c^2}{b^2-d^2}\)
a) chứng minh rằng từ tỉ lệ thức a/b=c/d ta suy ra a+b/b=c+d/d
b) ngược lại từ tỉ lệ thức a+b/b=c=d/d ta suy ra d/b=c/d
`Answer:`
a. Ta đặt \(\hept{\begin{cases}k=\frac{a}{b}=\frac{c}{d}\\bk=a\\dk=c\end{cases}}\)
\(\Rightarrow\frac{a+b}{b}=\frac{b+bk}{b}=\frac{\left(k+1\right).b}{b}=k+1\left(1\right)\)
\(\Rightarrow\frac{c+d}{d}=\frac{d+dk}{d}=\frac{\left(k+1\right).d}{d}=k+1\left(2\right)\)
Từ `(1)(2)=>\frac{a+b}{b}=\frac{c+d}{d}`
Chứng minh rằng từ tỉ lệ thức a/b=c/d (với b+d khác 0) ta suy ra đc a/b = a+c/b+d
Aps dung tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
Vậy \(\frac{a}{b}=\frac{a+c}{b+d}\)
Aps dung tính chất của dãy tỉ số bằng nhau ta có:
a/b =c/d =a+c/b+d
Vậy a/b =a+c/b+d
Ta có:a/b=c/d suy ra a/c=b/d
Đặt a/c=b/d=k (k thuộc z) suy ra :a=ck
:b=dk
Suy ra a/b=a+ck/b+dk=a+c/b+d.k/k=a+c/b+d
Vậy là ta đã chứng minh xong
C/m rằng từ tỉ lệ thức a/b=c/d (a,b,c,d khác 0 , a khác b, c khác d) ta suy ra đc các tỉ lệ thức:
a) a/a-b=c/c-d
b) a+b/b=c+d/d
mấy bn mọt toán ơi giúp mk vs!!!!!
còn lâu
hahaha!!!
đúng thì k nha
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)nên \(a=bk;c=dk\)
a) Ta có: \(\frac{a}{a-b}=\frac{bk}{bk-b}=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\left(1\right)\)
\(\frac{c}{c-d}=\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\left(2\right)\)
(1) và (2) ta \(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)
b) Ta có: \(\frac{a+b}{b}=\frac{c+d}{d}\)
\(\frac{a+b}{b}=\frac{bk+b}{b}=\frac{b\left(k+1\right)}{b}=k+1\left(1\right)\)
\(\frac{c+d}{d}=\frac{dk+d}{d}=\frac{d\left(k+1\right)}{d}=k+1\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\)
Chứng minh rằng từ tỉ lệ thức ab =cd (a−b≠0,c−d≠0) ta có thể suy ra tỉ lệ thức a+ba−b =c+dc−d .
Chứng minh rằng từ tỉ lệ thức ab =cd (a−b≠0,c−d≠0) ta có thể suy ra tỉ lệ thức a+ba−b =c+dc−d .