Tìm số chính phương có 4 chữ số và chia hết cho 75.
tìm số chính phương có 4 chữ số chia hết cho 75
tìm số chính phương có 4 chữ số chia hết cho 75
Tìm số chính phương có 4 chữ số chia hết cho 75
1,
a, Tìm số chính phương có 4 chữ số chia hết cho 147 và có chữ số tận cùng là 9
b, Tìm số chính phương có 3 chữ số chia hết cho 56
c, Tìm số chính phương có 4 chữ số chia hết cho 33
Gọi số cần tìm X => 1000<X<9999, đặt X= 147*A =>A không nhỏ hơn 8 và bé hơn hoặc bằng 67, tận cùng của X là 9 nên tận cùng của A phải là 7 như vậy A chỉ có thể 17,27,37,47,57,67 , mặt khác 147=3*7*7 suy ra A=3*k^2 ( k số twj nhiên), theo trên chỉ có hai số 27 và 57 chia hết 3 nên A chỉ có thể là 27, hoặc 57, thấy rằng chỉ có A= 27 thỏa màn, vậy X= 147*24 = 3969 = 63^2.
Tìm tất cả các chữ số a,b,c thỏa mãn
abc-cba=6b3
Tìm một số chính phương có 3 chữ số biết rằng nó chia hết cho 56
CMR: A=75(42018+42017+....+42+5)+25 chia hết cho 42019
Bài 1: Tìm n có 2 chữ số, biết rằng 2n+1 và 3n+1 đều là các số chính phương
Bài 2: Tìm số chính phương n có 3 chữ số, biết rằng n chia hết cho 5 và nếu nhân n với 2 thì tổng các chữ số của nó không thay đổi
Bài 3: Tìm số tự nhiên n (n>0) sao cho tổng 1! + 2! + ... + n! là một số chính phương
Bài 4: Tìm các chữ số a và b sao cho: \(\overline{aabb}\)là số chính phương
Bài 5: CMR: Tổng bình phương của 2 số lẻ bất kì không phải là một số chính phương
Bài 6: Một số gồm 4 chữ số, khi đọc ngược lại thì không đổi và chia hết cho 5, Số đó có thể là số chính phương hay không?
Bài 7: Tìm số chính phương có 4 chữ sô chia hết cho 33
CÁC BẠN GIÚP MÌNH NHÉ! THANKS
10 \(\le\)n \(\le\)99 => 21 < 2n + 1 < 199 và 31 < 3n + 1 < 298
Vì 2n + 1 là số lẻ mà 2n + 1 là số chính phương
=> 2n + 1 thuộc { 25 ; 49 ; 81 ; 121 ; 169 } tương ứng số n thuộc { 12; 24; 40; 60; 84 } ( 1 )
Vì 3n + 1 là số chính phương và 31 < 3n + 1 < 298
=> 3n + 1 thuộc { 49 ; 64 ; 100 ; 121 ; 169 ; 196 ; 256 ; 289 } tương ứng n thuộc { 16 ; 21 ; 33 ; 40 ; 56 ; 65 ; 85 ; 96 } ( 2 )
Từ 1 và 2 => n = 40 thì 2n + 1 và 3n + 1 đều là số chính phương
chịu thôi
...............................
tìm số chính phương có 4 chữ số chia hết cho 147 và có chữ số tận cùng là 9
Gọi số cần tìm X => 1000<X<9999, đặt X= 147*A =>A không nhỏ hơn 8 và bé hơn hoặc bằng 67, tận cùng của X là 9 nên tận cùng của A phải là 7 như vậy A chỉ có thể 17,27,37,47,57,67 , mặt khác 147=3*7*7 suy ra A=3*k^2 (k là số tự nhiên), theo trên chỉ có hai số 27 và 57 chia hết 3 nên A chỉ có thể là 27, hoặc 57, thấy rằng chỉ có A= 27 thỏa mãn, vậy X= 147*24 = 3969 = 63^2.
tìm số chính phương có 4 chữ số và chia hết cho 33 ?
Tìm các số chính phương có 4 chữ số và chia hết cho 22