cho số tự nhiên A lớn hơn 35 biết A chia 5 dư 1,A chia 7 dư 5,A chia 35 dư 6
Cho một số tự nhiên a lớn hơn 35. Biết a chia cho 5 dư 1, a chia cho 7 dư 6. Hỏi a chia cho 35 thì dư bao nhiêu?
Gọi n là số chia cho 5 dư 1, chia cho 7 dư 5.
Vì n không chia hết cho 35 nên n có dạng 35k + r (k, r \(\in\) N, r <35), trong="" đó="" r="" chia="" 5="" dư="" 1,="" chia="" 7="" dư="">
Số nhỏ hơn 35 chia cho 7 dư 5 là 5, 12, 19, 26, 33, trong đó chỉ có 26 chia cho 5 dư 1. Vậy r = 26.
Số nhỏ nhất có dạng 35k + 36 là 26.
k mk nha!
Tìm số tự nhiên a biết rằng a chia 5 dư 3, a chia cho 7 dư 5 và 35 < a < 105
tìm số tự nhiên a biết rằng 264 chia a dư 35 và 363 chia a thì dư 43( cần lời giải ngay nhé)
tìm số tự nhiên a nhỏ nhất biết a chia 3 dư 1, chia 4 dư 2, chia 5 dư 3, và chia hết cho 11
Tìm số tự nhiên a biết rằng a chia 5 dư 3, a chia cho 7 dư 5 và 35 < a < 105
Theo bài ra, ta có:
\(a=5k+3\Rightarrow a+2=5k+5⋮5\) (1)
\(a=7k+5\Rightarrow a+2=7k+7⋮7\)(2)
Từ (1) và (2) kết hợp với 5 và 7 nguyên tố cùng nhau, ta được:
\(a+2\inƯ\left(35\right)=\left\{35;70;105;...\right\}\)(vì a +2 > 0)
\(a\in\left\{33;68;103;...\right\}\)
Mà 35 < a < 105 nên a = 68
vậy a + 3 chia hết cho 5
a + 5 chia hết cho 7
còn gì tự làm tiếp à nha
Khi chia một số tự nhiên A chia cho 5 thì dư 1 Nếu chia số đó cho 7 thì dư 5 hỏi khi chia cho 35 dư bao nhiêu
1. Chứng tỏ rằng:
a. 105 + 35 chia hết cho 9 và cho 5
b. 105 + 98 chia hết cho 2 và cho 9
c. 102012 + 8 chia hết cho 3 và cho 9
d. 11...1 (27 chữ số 1) chia hết cho 27
2. Một số tự nhiên khi chia cho 4, cho 5, cho 6 đều dư 1. Tìm số đó biết rằng số đó chia hết cho 7 và nhỏ hơn 400.
3. Một số tự nhiên a khi chia hết cho 4 thì dư 3, chia cho 5 thì dư 4, chia cho 6 thì dư 5. Tìm số a, biết rằng 200 _< a _< 400.
4. Tìm số tự nhiên nhỏ nhất khi chia cho 15, 20, 25 được số dư lần lượt là 5, 10, 15.
1. một số tự nhiên biết khi chia cho 4 ; 5 ; 6 đều dư 1 .Tìm số đó biết rằng số đó chia hết cho 7 và nhỏ hơn 400
2. Một số tự nhiên a khi chia cho 4 thì dư 3 ; chia cho 5 thì dư 4 ; chia cho thì dư 5 . Tìm số tự nhiên a biết rằng 200 nhỏ hơn hoặc bằng a và a nhỏ hơn hoặc bằng 400
1. Gọi số tự nhiên cần tìm là \(\left(a\in N\right)\)và \(a-1\)là \(BC\)của 4 ; 5 ; 6 và \(a⋮7\).Ta có:
\(BCNN\left(4;5;6\right)=60.\)
\(BC\left(4;5;6\right)=\left\{0;60;120;180;240;300;360;420;....\right\}\)
\(\Rightarrow a-1\in\left\{0;60;120;180;240;300;360;420\right\}\)
\(\Leftrightarrow a\in\left\{1;61;121;181;241;301;361;....\right\}\)
Vì \(\Rightarrow301⋮7\Rightarrow\)số tự nhiên cần tìm là : 301
2. Ta thấy \(a+1\)là BC của (4;5;6) và 201 < a + 1 < 401
=> BCNN (4,5,6) = 60 .
BC (4,5,6) = {0 ; 60 ; 120 ; 180 ; 240 ; 300 ; 360 ....}
=> a + 1 = 240 ; a + 1 = 300 hoặc a + 1 = 360 => a = {239 ; 299 ; 359}
Vậy ....
Bài 1: Tìm số tự nhiên nhỏ nhất khi chia cho 6, 7, 9 được số dư theo thứ tự 2, 3,5.
Bài 2: Số học sinh khối 6 của một trường trong khoảng từ 200 và 400, khi xếp hàng 12, 15, 18 đều thừa 5 học sinh. Tính số học sinh đó.
Bài 3: Tổng số học sinh khối 6 của một trường có khoảng từ 235 đến 250 em học sinh, khi chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4, chia cho 6 dư 5, chia cho 10 dư 9. Tìm số học sinh của khối 6.
Bài 4: Một số tự nhiên chia cho 7 thì dư 5, chia cho 13 thì dư 4. Nếu đem số đó chia cho 91 thì dư bao nhiêu?
Bài 5: Một số tự nhiên a khi chia cho 7 dư 4, chia cho 9 dư 6. Tìm số dư khi chia a cho 63.
Bài 6: Tìm số tự nhiên n lớn nhất có ba chữ số, sao cho n chia cho 15 và 35 có số dư lần lượt là 9 và 29.
Bài 7: Tìm số tự nhiên nhỏ nhất có ba chữ số chia cho 18; 30; 45 có số dư lần lượt là 8; 20; 35.
a) tìm số tự nhiên có ba chữ số lớn nhất mà khi chia số đó cho 4 dư 3, chia 5 dư 4, chia 6 dư 5
b) tìm số tự nhiên nhỏ hơn 400 mà khi chia số đó cho 2; 3; 4; 5; 6 đều dư 1 và khi chia cho 7 thì không dư