cho A = 1 -1/2 + 1/3 - 1/4 +....+1/49 - 1/50. chứng tỏ rằng 7/12<A
Cho A =1-1/2+1/3-1/4+...+1/49-1/50 Hãy chứng tỏ rằng 7/12<A<5/6
Cho A=1-1/2 +1/3 -1/4 +...+1/49 -1/50 Hãy chứng tỏ rằng 7/12<A<5/6
cho A=1 - 1/2 + 1/3 - 1/4 +1/5 - 1/6 +..............+1/49 -1/50
Chứng tỏ 7/12<A<5/6
\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}=\left(1+\frac{1}{3}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right).\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\right)\)\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\)
\(A=\left(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{35}\right)+\left(\frac{1}{36}+...+\frac{1}{50}\right)>\frac{1}{35}.10+\frac{1}{50}.15=\frac{41}{70}>\frac{7}{12}\)
\(A< \frac{10}{26}+\frac{15}{36}< \frac{5}{6}\) Vậy ....
A) Tính M: 3/4.8/9.15/16.9999/10000 B) Chứng tỏ rằng: 1/26+1/27+...+1/50=99/50-97/49+...+7/4-5/3+3/2-1
\(M=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot\cdot\cdot\cdot\frac{9999}{10000}\)
\(=\frac{1.3}{2.2}\cdot\frac{2.4}{3.3}\cdot\frac{3.5}{4.4}\cdot\cdot\cdot\cdot\frac{99.101}{100.100}\)
\(=\frac{1}{2}\cdot\frac{101}{100}=\frac{101}{200}\)
Xét vế phải :
\(VP=\frac{99}{50}-\frac{97}{49}+...+\frac{7}{4}-\frac{5}{3}+\frac{3}{2}-1\)
\(=2.\left(\frac{99}{100}-\frac{97}{98}+...+\frac{7}{8}-\frac{5}{6}+\frac{3}{4}-\frac{1}{2}\right)\)
\(=2\left[\left(1-\frac{1}{100}\right)-\left(1-\frac{1}{98}\right)+...+\left(1-\frac{1}{4}\right)-\left(1-\frac{1}{2}\right)\right]\)
\(=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\right)\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{25}+\frac{1}{26}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)\)
\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{49}+\frac{1}{50}=VT\Rightarrow\left(đpcm\right)\)
Cho \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)\(\frac{1}{50}\)
Hãy chứng tỏ rằng \(\frac{7}{12}< A< \frac{5}{6}\)
cho A=1-1/2+1/3-1/4+1/5-1/6+...+1/49-1/50
chứng minh rằng 7/12<A<5/6
Chứng tỏ rằng:
a,1/(1*2)+1/(2*3)+1/(3*4)+...+1/(49*50)<1
\(=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}\)\(<1\)
\(\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}<1\)
Vậy \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}<1\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}\)
\(=\frac{49}{50}\)
\(\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}<1\)
Cho a=1×2×3×4.......49×50.Chứng tỏ rằng các số sau đây ld hợp số :a+2;a+3;.......;a+50
Chứng tỏ A > 7 biết A =1 -1/2+1/3-1/4+ 1/5-1/6+...+1/49-1/50