chung minh rang C chia het cho 7,43
C=1+6+6^2+6^3+.....+6^88+6^89
cho a;b;c la cac so nguyen , biet a+b+c chia het cho 6 chung minh rang a^3+b^3+c^3 chia het cho 6
Đây là điều đương nhiên ko cần phải chứng minh
chung minh rang trong 9 so tu nhien bat ki luon tim duoc 6 so co tong chia het cho 6
chung minh rang trong 3 so tu nhien bat ki luon ton tai 2 so co tong chia het cho 2
chung minh rang a la 1 so le khong chia het cho 3 thi a2 -1 chia het cho 6
Toan 6: chung minh rang: (1+3+3^2+3^3+...+3^35) chia het cho 520?
Chung minh rang : P chia het cho 301
chung minh rang 4+4^3+4^5+4^7+...+4^23 chia het cho 68
chung minh rang 1+3+3^2+3^3+...+3^2000 chia het cho 13
giup mink voi thu 6 mink nop roi
4 + 4^3 + 4^5 + 4^7 + ... + 4^23
= ( 4 + 4^3 ) + ( 4^5 + 4^7 ) +.....+ ( 4^22 + 4^23)
=4( 1+16 ) + 4^5( 1+16 ) +....+ 4^22( 1+ 16 )
=4 x 17 + 4^5 x 17+....+ 4^22 x 17 chia hết cho 68
Câu 2:
1+3+3^2+3^3+....+3^2000
=( 1+3 +3^2 ) + ( 3^3 + 3^4 + 3^5 ) +.....+ ( 3^ 1998 + 3^1999 + 3^2000)
=1( 1+ 3 + 9 ) + 3^3 + ( 1+ 3 + 9 ) +......+ 3^1998+( 1+ 3 + 9 )
= 1 x 13+ 3^3 x 13 +......+ 3^1998 x 13 chia hết cho 13
k mk nha lần sau mk k lại
Câu 1 nha : 4+4^3+4^5+4^7+....+4^23 = (4+4^3)+(4^5+4^7)+....+(4^21+4^23)
= 68 + 4^4.(4+4^3)+....+4^20.(4+4^3) = 68 + 4^4.68 + .... + 4^20.68
=68.(1+4^4+....+4^20) chia hết cho 68
Câu 2 nha 1+3+3^2+...+3^2000 = (1+3+3^2)+(3^3+3^4+3^5)+....+(3^1998+3^1999+3^2000)
= 13 + 3^3.(1+3+3^2)+....+3^1998.(1+3+3^2) = 13+3^3.13+....+3^1998.13
=13.(1+3^3+....+3^1998) chia hết cho 13
chung to rang :
a) 7.8.9.10 + 2.3.4.5.6 + 30 chia het cho 5
b) 2^3+2^4+2^5+2^6 chia het cho 3
c) 2^3+2^4+2^5+2^6 chia het cho 6
d) n.(n+215) chia het cho 2
e) (n+1).(n+2) chia het cho 2
g) 2016.n + 27 chia het cho 9
h)1.2.3+3.41+450 chia het cho 3
i) 3^3+3^4+3^5+3^6+3^7+3^8 chia het cho 4
k) 3^3+3^4+3^5+3^6+3^7+3^8 chia het cho 13
MONG CAC BAN GIUP MINH ,MINH RAT GAP!
Cho p la so nguyen to lon hon 3. Biet rang p+2 cung la so nguyen to. Chung minh rang p+1 chia het cho 6.
Số nguyên tố lớn hơn 3 sẽ có dạng 3k+1 hay 3k+2 (k thuộc N)
Nếu p=3k+1 thì p+2=3k+1+2=3k+3=3.(k+1) là số nguyên tố. Vì 3.(k+1) chia hết cho 3 nên dạng p=3k+1 không thể có.
Vậy p có dạng 3k+2 (thật vậy, p+2=3k+2+2=3k+4 là 1 số nguyên tố).
=>p+1=3k+2+1=3k+3=3.(k+1) chia hết cho 3.
Mặt khác, p là 1 số nguyên tố lớn hơn 3 cũng như lớn hơn 2 nên p là 1 số nguyên tố lẻ => p+1 là 1 số chẵn => p+1 chia hết cho 2.
Vì p chia hết cho cả 2 và 3 mà ƯCLN(2,3)=1 nên p+1 chia hết cho 6.
phuong ne 3(k+1)sao la so nguyen to duoc
p là số nguyên tố lớn hơn 3
=>p không chia hết cho 3
=>p=3k+1;3k+2
xét p=3k+1=>p+2=3k+3=3(k+1) chia hết cho 3
=>p+2 là hợp số(Vô lí)
=>p=3k+2
=>p+1=3k+3=3(k+1)
p là số nguyên tố lớn hơn 3
=>p là số lẻ
=>p+1 là số chẵn
=>p+1 chia hết cho 2
Vì (3;2)=1=>p+1 chia hết cho 6
=>đpcm
Chung minh rang : P chia het cho 301