Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
đỗ ngọc ánh
Xem chi tiết
tôi cô đơn
Xem chi tiết
Thủy Lê
Xem chi tiết
Kiệt Nguyễn
5 tháng 10 2019 lúc 16:53

\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)

\(\Leftrightarrow\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}\)

\(=\frac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}=0\)

\(\Rightarrow\hept{\begin{cases}bz=cy\\cx=az\\ay=bx\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{b}{y}=\frac{c}{z}\\\frac{c}{z}=\frac{a}{x}\\\frac{a}{x}=\frac{b}{y}\end{cases}}\Leftrightarrow\frac{a}{x}=\frac{b}{y}=\frac{z}{c}\)

\(\Leftrightarrow x:y:z=a:b:c\)

Edogawa Conan
5 tháng 10 2019 lúc 16:57

Ta có: \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)

=> \(\frac{a\left(bz-cy\right)}{a^2}=\frac{b\left(cx-az\right)}{b^2}=\frac{c\left(ay-bx\right)}{c^2}\)

=> \(\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}=\frac{abz-acy+bcx-abz+acy-bcx}{c^2+b^2+c^2}=0\)

=> \(\hept{\begin{cases}\frac{bz-cy}{a}=0\\\frac{cx-az}{b}=0\\\frac{ay-bx}{c}=0\end{cases}}\) => \(\hept{\begin{cases}bz-cy=0\\cx-az=0\\ay-bx=0\end{cases}}\) => \(\hept{\begin{cases}bz=cy\\cx=az\\ay=bx\end{cases}}\) => \(\hept{\begin{cases}\frac{b}{y}=\frac{c}{z}\\\frac{c}{z}=\frac{a}{x}\\\frac{a}{x}=\frac{b}{y}\end{cases}}\) => \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)=> \(a:b:c=x:y:z\)

GT 6916
Xem chi tiết
ST
18 tháng 11 2018 lúc 17:13

\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)

=>\(\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}=\frac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}=0\)

=>\(\hept{\begin{cases}\frac{bz-cy}{a}=0\\\frac{cx-az}{b}=0\\\frac{ay-bx}{c}=0\end{cases}\Rightarrow\hept{\begin{cases}bz-cy=0\\cx-az=0\\ay-bx=0\end{cases}\Rightarrow}\hept{\begin{cases}bz=cy\\cx=az\\ay=bx\end{cases}\Rightarrow}\hept{\begin{cases}\frac{y}{b}=\frac{z}{c}\\\frac{z}{c}=\frac{x}{a}\\\frac{x}{a}=\frac{y}{b}\end{cases}}\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}}\)

hay x:y:z=a:b:c

depgiaicogisaidau
18 tháng 11 2018 lúc 17:29

ai xoạc nào

Võ nguyễn Thái
Xem chi tiết
Võ Đông Anh Tuấn
11 tháng 7 2016 lúc 11:03

Ta có : 

  \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}=\frac{bxz-cxy}{ax}=\frac{cxy-ayz}{by}\)

             \(=\frac{ayz-bxz}{cz}=\frac{0}{ax+by+cz}=0\)

\(\Leftrightarrow bz=cy\Rightarrow\frac{z}{c}=\frac{y}{b}\)          \(\left(1\right)\)

     \(cx=az\Rightarrow\frac{x}{a}=\frac{z}{c}\)           \(\left(2\right)\)

     \(ay=bx\Rightarrow\frac{y}{b}=\frac{x}{a}\)           \(\left(3\right)\)

Từ \(\left(1\right),\left(2\right),\left(3\right)\Leftrightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\) hay \(x:y:z=a:b:c\)

Sorano Yuuki
Xem chi tiết
Trà My
29 tháng 5 2017 lúc 22:51

\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}=\frac{abx-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}=\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}\)

\(=\frac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}=0\)

=>bz-cy=cx-az=ay-bx=0

bz-cy=0 => bz=cy => \(\frac{b}{y}=\frac{c}{z}\)cx-az=0 => cx=az => \(\frac{c}{z}=\frac{a}{x}\)

=>\(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\Rightarrow a:b:c=x:y:z\)(đpcm)

Nguyễn Thị Ngố
Xem chi tiết
Phan The Anh
Xem chi tiết
Zek Tim
Xem chi tiết