Chứng minh tồn tại số tự nhiên chia hết cho 37 và có tổng các chữ số là:
a, 27
b, 37
chứng minh rằng tồn tại một số tự nhiên chia hết cho 37 có tổng các chữ số bằng 37
chứng minh rằng tồn tại một số tự nhiên chia hết cho 37 có tổng các chữ số bằng 27
chứng minh tồn tại số tự nhiên chia hết cho 37 và tổng các chữ số bằng 27
Chứng minh rằng tồn tại một số tự nhiên chia hết cho 37 và có tổng các chữ số bằng 37
(Giúp mình đi mình đang cần gấp ai giải đúng mình cho 3 tích luôn)
theo dõi câu trả lời của bạn rồi k là xong
chứng minh rằng tồn tại 1 số tự nhiên chia hết cho 37 và tổng chia hết cho 37
ghê đấy cũng biết hỏi bài cơ à
CMR : Tồn tại một số tự nhiên chia hết cho 37 và có tổng các chữ số bằng
a)27.
b)37
(giúp mik làm nhanh nhé mik sẽ cho nhiều điẻm)
a)Ta thấy:
111 chia hết cho 37
Mà số gồm 27 chữ số 1 sẽ chia hết cho 111(do 27 chia hết cho 3)
b)mình chưa làm được
Bài 1: Cho 8 số tự nhiên có 3 chữ số. Chứng minh rằng trong 8 số đó, tồn tại 2 số mà khi viết liên tiếp nhau thì tạo thành 1 số có 6 chữ số chia hết cho 7
Bài 2: Cho 3 chữ số khác nhau và khác 0. Lập tất cả các số tự nhiên có 3 chữ số gồm cả 3 chứ số ấy. Chứng minh rằng tổng của chúng chia hết cho 6 và 37
Bài 3: Một học sinh viết các số tự nhiên từ 1 đến abc(có gạch trên đầu). Bạn đó phải viết tất cả m chữ số. Biết rằng m chia hết cho abc, tìm abc
Mọi người chi tiết hộ nhé, tks
Chia 1 số tự nhiên (trong 8 số đó) cho 7 ta thu được 1 số dư
⇒ Khi chia cả 8 số đó cho 7 ta sẽ thu được 8 số dư
Mà một phép chia cho 7 có thể dư 0; 1; 2; 3; 4; 5; 6
⇒ Có ít nhất 2 trong 8 số chia cho 7 thì cùng số dư
⇒ Hiệu 2 số đó chia hết cho 7
Gọi 2 số đó là và (0 ≤ a, b , c, d, e, f ≤ 9; a, d khác 0)
Không mất tính tổng quát, giả sử >
Ta có:
= 1000 +
⇔ = 1001 – +
⇔ = 7 . 143 . –
Vì 7 . 143 . chia hết cho 7 và chia hết cho 7 nên chia hết cho 7.
Vậy luôn tại 2 trong 8 số đó viết liền nhau tạo thành 1 số chia hết cho
cho 3 chữ số khác nhau và khác 0.Lập tất cả các số tự nhiên có ba chữ số gồm cả ba chữ số ấy .Chứng minh rằng tổng của chúng chia hết cho 37
3 chữ số là a; b; c
\(\overline{abc}+\overline{acb}+\overline{bac}+\overline{bca}+\overline{cab}+\overline{cba}=\)
\(=222a+222b+222c=222\left(a+b+c\right)=\)
\(=2.3.37\left(a+b+c\right)⋮37\)