cho tam giác ABC cân tại A có AB=căn 2 và BC = 2 . D là điểm đối xứng với A qua BC
a) tính BD,DC
b) tứ giác ABCD là hình gì ? vì sao? tính diện tích ABCD
HÃY GIÚP TÔI
Bài 1: Cho tam giác ABC cân tại A có AB= căn 2 và BC=2. D là điểm đối xứng với A qua BC.
1) Tính BD, DC
2) Tứ giác ABDC là hình gì? Vì sao?
BD=DC=AB=căn2
Dễ thấy
ABDC là hinh thoi
Lấy I là trung điểm BC. Dùng định lí pitago có AI=1=IC=IB nên có BAC vuông tại A nên ABCD là hình vuông
Cho tam giác ABC có góc A=90 độ , AC=5cm , BC=13cm .Gọi I là trung điểm của cạnh AB,D là điểm đối xứng với C qua I
a, Tứ giác ABCD là hình gì ? Vì sao ?
b, Tính số đo diện tích tam giác ABC ?
Cho tam giác ABC cân tại A, đường trung tuyến AM. Biết AB=5cm, BC=6cm. Gọi K là điểm đối xứng với A qua M
a) chứng minh: tứ giác ABKC là hình thoi
b) Qua A kẻ đường thẳng song song với BC cắt KC kéo dài tại D. Tứ giác ABCD là hình gì? Vì sao?
c) Tính số đo góc DAK. Từ đó tính diện tích tam giác DAK
d) Tam giác ABC có thêm điều kiện gì thì ABKC là hình vuông?
Vẽ hình nữa nha
a) Xét \(\Delta\)ABM và \(\Delta\)KCM có: MK = MA ; MB = MC ; ^AMB = ^KMC ( đối đỉnh )
=> \(\Delta\)ABM = \(\Delta\)KCM => AB = KC (1)
Vì \(\Delta\)ABC cân có AM là đường trung tuyến => AM là đường trung trực hay KM là đường trung trực => KB = KC(2)
\(\Delta\)ABC cân => AB = AC (3)
Từ (1) ; (2) (3) => AB = AC = KB = KC => ABKC là hình thoi
b) ABKC là hình thoi => KC //AB => CD //AB mà theo đề AD //BC
=> ABCD là hình bình hành
c) \(\Delta\)ABC cân có AN kaf đường trung tuyến => AM vuông góc BC mà AD // BC => AD vuông AM => ^DAK = ^DAM = 90 độ
Ta có: BM = 1/2 . BC = 6 : 2 = 3 cm AB = 5 cm
\(\Delta\)ABM vuông tại M . Theo định lí Pitago => AM = 4 cm
=> AK = 2AM = 2.4 = 8cm
AD = BC = 6cm ( ABCD là hình bình hành )
=> S ( DAK ) = AD.AK : 2 = 6.8 : 2 = 24 ( cm^2)
d) Để ABKC kaf hình vuông; mà ABKC là hình thoi nên ^BAC = 90 độ
=> tam giác ABC Có thêm điều kiện vuông tại A thì ABKC là hình vuông.
Cho tam giác abc vuông tại a .điểm D là trung điểm của BC .kẻ DE vuông góc với AB gọi N là điểm đối xứng với D qua AC. F là giao điểm của DN và AC
a) tứ giác AÈDF là hình gì vì saB
b) tứ giác ABCD là hình gì vì sao
c)biết AB = 6cm AC = 8cm Tính diện tích tứ giác aedf
d)
tam giác ABC có điều kiện gì thì tứ giác aedf là hình vuông
Câu 1 Cho tứ giác ABCD Gọi Q là trung điểm của AC đường thẳng qua Q cắt AB AC lần lượt tại I và K chứng minh diện tích tam giác AIK bằng diện tích tam giác CIK
Câu 2 Cho tam giác ABC cân tại A Gọi M và N lần lượt là trung điểm của AB và AC .a) chứng minh tứ giác BMNC là hình thang .b). Trên tia đối của tia MN xác định điểm E sao cho NE=NM hỏi tứ giác AECM là hình gì vì sao
Câu 3 Cho tam giác abc vuông tại a gọi D E theo thứ tự là trung điểm của AB BC Tính de biết BC = 10 cm AB = 8 cm
Câu 4 cho tứ giác ABCD có Â = 90° B =60° C =120°. a)tính số đo góc D. b) tứ giác ABCD là hình gì vì sao?
Giúp mình với sắp thi rùi
Cho tam giác ABC cân tại A đường trung tuyến AM. Gọi O là trung điểm của AC. D là điểm đối xứng với M qua O
a chứng minh tứ giác AMCD là hình chữ nhật
b tứ giác AMBD là hình gì Vì sao
c tính diện tích biết AM= 4cm BC=5cm
Bài 2
Cho tứ giác ABCD có AC vuông góc với BC. Gọi E,F,G,H lần lượt là trung điểm của AB,BC,CD,DA
a chứng minh tứ giác EFGH là hình chữ nhật
b tính diện tích tứ giác EFGH biết AC= 10cm BD = 8cm
giúp mk với ạ mk cần gấp
cho tam giác ABC vuông tại A, trung tuyến AM, D là trung điểm của AB, E đối xứng với M quaD
a, cmr E đối xứng với M qua AB
b, tứ giác AEMC và AEBM là hình gì ? Vì sao
c, cho BC= 4cm. TÍNH chu vi tứ giác AEBM
d, Cho BC =4cm và góc C=30 độ .Tính diện tích tam giác ABC và diện tích tam giác AEBM
e, tam giác ABC có điều kiện gì để AEDM là hình vuông
(x-5) (x-7)=0
cho tam giác ABC cân tại A,dường trung tuyến AM .biết AB =5cm,BC=6cm.gọi K là điểm đối xứng với A qua M
a)chứng minh tứ giác ABKC là hình thoi
b)qua A kẻ đường thẳng song song với BC cắt KC kéo dài tại D.tứ giác ABCD là hình gì,vì sao
c)tính số đo góc DAK.từ đó tính diện tích tam giác DAK
a) Do t/giác ABC cân tại A có AM là đường trung tuyến
=> AM cũng là đường cao
=> AM \(\perp\)BC hay AK \(\perp\)BC
Xét tứ giác ABKC
có AM = MK (gt) ; BM = CM (gt)
AK \(\perp\)BC (cmt)
=> ABKC là hình thoi
b) Do ABKC là hình thoi => AB // CK hay AB // CD (vì K, C,D thẳng hàng)
Xét tứ giác ABCD có AB // CD (cmt) AD // BC (gt)
=> ABCD là hình bình hành
c) Ta có: BC // AD (gt)
AM \(\perp\)BC (cm câu a)
=> AM \(\perp\)AD \(\equiv\)A
=> \(\widehat{KAD}=90^0\)
Ta có: BM = MC = 1/2BC = 1/2.6 = 3 cm
Áp dụng định lí Pi - ta - go vào t/giác ABM vuông tại M, ta có:
AB2 = AM2 + BM2
=> AM2 = AB2 - BM2 = 52 - 32 = 25 - 9 = 16
=> AM = 4 (cm)
Ta lại có: AM + MK = AK => AK = 2AM (do AM = MK)
=> AK = 2.4 = 8 (cm)
Do ABCD là hình bình hành => BC = AD = 6 cm
Diện tích t/giác DAK là: SDAK = 6.8/2 = 24 (cm2)
cho tam giác ABC cân tại A , có AB = 5cm , BC = 6cm . Gọi M, O lần lượt là trung điểm của BC và AC . Gọi N là điểm đối xứng vs M qua O a. Tính diện tích tam giác ABC b. Tứ giác AMCN là hình gì , vì sao c. Tam giác ABC có thêm đk gì thì tứ giác AMCN là hình vuông
Hình bạn tự vẽ chắc dc rùi nhé mình chỉ giải thôi
Bài làm
a/ \(\Delta\)ABC cân tại A có AM là đường trung tuyến ứng với cạnh BC ( M là trung điểm BC )
Nên Am cũng là đường cao \(\Rightarrow\)AM \(⊥\)BC
vì M là trung điểm của BC \(\Rightarrow\)BM= MC = \(\frac{1}{2}BC=\frac{1}{2}.6=3cm\)
Xét tam giác AMB vuông tại M có:
AM2 + BM2 = AB2
AM2 + 32 = 52
AM2 + 9 = 25
AM2 = 25 - 9 =16
\(\Rightarrow\)AM= \(\sqrt{16}=4\)
Vậy S ABC = \(\frac{1}{2}AM.BC\)= \(\frac{1}{2}4.6=12\)
b/ Xét tứ giác AMCN có :
OA=OC (gt)
OM=ON ( N đối xứng với M qua O )
\(\Rightarrow\)Tứ giác AMCN là hình bình hành
Mà AM \(⊥\)MC ( chứng minh ở câu a ) \(\Rightarrow\)\(\widehat{AMC}\)= 90 0
Hình bình hành AMCN có \(\widehat{AMC}=90\)nên AMCN là hình chữ nhật
C/ Để AMNC là hình vuông thì AM phải bằng MC ( Vì theo lý thuyết hcn có 2 cạnh kề bằng nhau là hình vuông )
Nếu tam giác ABC vuông cân tại A thì có :
AM là đường trung tuyến ứng với cạnh huyền BC nên BM = AM = MC
Vậy để tứ giác AMCN là hình vuông thì tam giác ABC phải là tam giác vuông cân tại A