Tìm số dư trong phép chia số 2 mũ 2006 cho 7
Tìm số dư trong phép chia 2 mũ 2006 cho 7
tìm số dư của phép chia 7 mũ 129 cho 60 và số dư trong phép chia 17 mũ 1994 cho 16
a) chứng tỏ rằng A=1+2+22+23+...+22006 chia hết cho 7
b) tìm số dư trong phép chia 22006 cho 7
a) Chứng tỏ rằng A=1+2+22+23+...+22006 chia hết cho 7
b) Tìm số dư trong phép chia 22006 cho 7
(a) Chứng tỏ rằng A= 1 + 2 + 22 + 23 +...+ 22006 chia hết cho 7
(b) Tìm số dư trong phép chia 22006 cho 7
a)\(A=1+2+2^2+2^3+2^4+2^5+...+2^{2004}+2^{2005}+2^{2006}\)
\(A=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{2004}+2^{2005}+2^{2006}\right)\)
\(A=7+2^3\left(1+2+2^2\right)+...+2^{2004}\left(1+2+2^2\right)\)
\(A=7+2^3.7+...+2^{2004}.7\)
\(A=7\left(1+2^3+...+2^{2004}\right)\) chia hết cho 7
b)\(2^{2006}=2^{2004}.2^2=\left(2^6\right)^{334}.4=64^{334}.4\)
Mặt khác: \(64\equiv1\left(mod7\right)\Rightarrow64^{334}\equiv1\left(mod7\right)\Rightarrow64^{334}.4\equiv4\left(mod7\right)\)
=>22006 chia 7 dư 4
Trl :
Bạn kia làm đúng rồi nhé !
Học tốt nhé bạn @
Tìm số dư cho phép chia 22006 :7
\(2^3\equiv1\left(mod7\right)\)
\(\Rightarrow\left(2^3\right)^{668}.2^2\equiv1^{668}.2^2\left(mod7\right)\)
\(\Rightarrow2^{2006}\equiv4\left(mod7\right)\)
-Vậy: \(2^{2006}\) chia 7 dư 4
\(2^{2006}=\left(2^{17}\right)^{118}=131072^{118}\)
Ma \(131072\equiv4\left(mod7\right)\)=>\(131072^{118}=4\left(mod7\right)\)
=> 131072^118 hay 2^2006 chia 7 du 3
(a):Chứng tỏ rằng A=1+2+22+23+...+22006chia hết cho 7
(b):Tìm số dư trong phép chia 22006 cho7
Tìm số dư của phép chia 1 + 2 + 2 mũ 2 + 2 mũ 3 +... + 2 mũ 2019 cho 7
Đặt S=1+2+2^2+..........+2^2019
Vì: S có 2020 số hạng nên ta chia S thành:673 nhóm mỗi nhóm có 3 số hạng và thừa 1 số hạng như sau
S=1+(2+2^2+2^3)+(2^4+2^5+2^6)+...........+(2^2017+2^2018+2^2019)
S=1+2(1+2+4)+2^4(1+2+4)+........+2^2017(1+2+4)
S=1+2.7+2^4.7+.....+2^2017.7
S=1+7(2+2^4+2^2017) chia 7 dư 1
Vậy: 1+2+2^2+2^3+..........+2^2019 chia 7 dư 1
Đặt S=1+2+2^2+..........+2^2019
Vì: S có 2020 số hạng nên ta chia S thành:673 nhóm mỗi nhóm có 3 số hạng và thừa 1 số hạng như sau
S=1+(2+2^2+2^3)+(2^4+2^5+2^6)+...........+(2^2017+2^2018+2^2019)
S=1+2(1+2+4)+2^4(1+2+4)+........+2^2017(1+2+4)
S=1+2.7+2^4.7+.....+2^2017.7
S=1+7(2+2^4+2^2017) chia 7 dư 1
Vậy: 1+2+2^2+2^3+..........+2^2019 chia 7 dư 1
tìm số dư trong phép chia số : B= 8 mũ 102 - 2 mũ 102+ 2016 mũ 2016 cho 5