Chứng minh rằng không có số tự nhiên nào mà chia cho 15 dư 6 còn chia cho 9 dư 1
Chứng minh rằng không có số tự nhiên nào mà chia cho 15 dư 6 còn chia cho 9 dư 1
Gọi số tự nhiên đó là x
Gọi a là thương số của: x chia 15 (dư 6),
theo đề ta có:
(15 . a)+6 = x
Gọi b là thương số của: x chia 9 (dư 1),
theo đề ta có:
(9 . b)+1 = x
Suy ra,
15a+6 = 9b+1
15a -9b = -5
a < b
a = 1, b = 2 <=> -3 khác -5 loại
a = 2, b = 4 <=> -6 khác -5 loại
a = 3, b = 6 <=> -9 khác -5 loại
a = 4, b = 7 <=> -3 khác -5 loại
a = 5, b = 9 <=> -6 khác -5 loại
=> không có số tự nhiên nào thỏa mãn điều kiện trên.
tại sao 15a+6=9a+1
15a-9b=-5?????????????????????????
Chứng minh rằng không có số tự nhiên nào mà chia cho 15 dư 6 còn chia 9 thì dư 1
Gọi số chia là a
a = 15m + 6 = { m ∈ n }
a = 9m + 1 = { m ∈ n }
Vậy 15m ⋮ 3 ; 6 ⋮ 3
=> 15m + 6 ⋮ 3
Thì 9m ⋮ 3 ; 1 không chia hết cho 3
=> 9m + 1 không chia hết cho 3
Ta thấy 15m + 3 # 9m + 1
Vậy không tồn tại số cần tìm.
Số chia 15 dư 6 luôn chia hết cho 3
Số chia 9 dư 1 thì không chia hết cho 3
Vậy không có số nào thỏa cả hai điều kiện trên
Chứng minh rằng không có số tự nhiên nào mà chia cho 15 dư 6 còn chia 9 thì dư 1
Số chia 15 dư 6 luôn chia hết cho 3
Số chia 9 dư 1 thì không chia hết cho 3
Vậy không có số nào thỏa cả hai điều kiện trên
Gọi số tự nhiên đó là x
Gọi a là thương số của: x chia 15 (dư 6),
theo đề ta có:
(15 . a)+6 = x
Gọi b là thương số của: x chia 9 (dư 1),
theo đề ta có:
(9 . b)+1 = x
Suy ra,
15a+6 = 9b+1
15a -9b = -5
a < b
a = 1, b = 2 <=> -3 khác -5 ( loại )
a = 2, b = 4 <=> -6 khác -5 (loại )
a = 3, b = 6 <=> -9 khác -5 ( loại )
a = 4, b = 7 <=> -3 khác -5 ( loại )
a = 5, b = 9 <=> -6 khác -5 ( loại )
=> không có số tự nhiên nào TMĐK trên.
Hok tốt
Gọi số cần tìm là a, a thuộc N
Ta có :\(a\div15\) dư 6 => \(a-6⋮5\)
Vì \(\left(3;5\right)=1\) và \(3.5=15\)
\(\Rightarrow\)a -6 chia hết cho 3 và chia hết cho 5
Vì a-6 chia hết cho mà 6 chia hết cho 3 => a chia hết cho 3
Vì a-6 chia hết cho 5 =a-1 chia hết cho 5
Giả sử a chia 9 dư 1, ta có a-1 chia hết cho 9
Mà a-1 chia hết cho 5
\(\left(9;5\right)=1\) và \(9.5=45\)
=> a-1 chia hết cho 45
=> a ko chia hết cho 3
=> a thuộc tập hợp rỗng
Vậy ko có 1 số nào vừa chia 15 dư 6 vừa chi 9 dư 1
Chứng minh rằng không có số tự nhiên nào mà chia hết cho 15 dư 6 còn chia cho 9 thì dư 1.
Gọi số tự nhiên đó là x
Gọi a là thương số của: x chia 15 (dư 6),
theo đề ta có:
(15 * a)+6 = x
Gọi b là thương số của: x chia 9 (dư 1),
theo đề ta có:
(9 * b)+1 = x
Suy ra,
15a+6 = 9b+1
15a -9b = -5
a < b
a = 1, b = 2 <=> -3 ≄ -5 loại
a = 2, b = 4 <=> -6 ≄ -5 loại
a = 3, b = 6 <=> -9 ≄ -5 loại
a = 4, b = 7 <=> -3 ≄ -5 loại
a = 5, b = 9 <=> -6 ≄ -5 loại
(ko cần tk âu tại mik lấy trên mạng chứ ko pải mik tự làm nhưng mik rất vui khi giúp đc b)
Gọi số tự nhiên đó là x
Gọi a là thương số của: x chia 15 (dư 6),
theo đề ta có:
(15 x a)+6 = x
Gọi b là thương số của: x chia 9 (dư 1),
theo đề ta có:
(9 x b)+1 = x
Suy ra,
15a+6 = 9b+1
15a -9b = -5
a < b
a = 1, b = 2 <=> -3 ≄ -5 loại
a = 2, b = 4 <=> -6 ≄ -5 loại
a = 3, b = 6 <=> -9 ≄ -5 loại
a = 4, b = 7 <=> -3 ≄ -5 loại
a = 5, b = 9 <=> -6 ≄ -5 loại
Suy ra, không có số tự nhiên nào thỏa mãn điều kiện trên.
Tk mk nha
Số chia 15 dư 6 luôn chia hết cho 3
Số chia 9 dư 1 thì không chia hết cho 3
Vậy không có số nào thỏa cả hai điều kiện trên
chứng minh rằng không có số tự nhiên nào mà chia cho 15 dư 6 còn chia cho 9 thì dư 1
Gọi số tự nhiên đó là x
* là dấu nhân.
Gọi a là thương số của: x chia 15 (dư 6),
theo đề ta có:
(15 * a)+6 = x
Gọi b là thương số của: x chia 9 (dư 1),
theo đề ta có:
(9 * b)+1 = x
Suy ra,
15a+6 = 9b+1
15a -9b = -5
a < b
a = 1, b = 2 <=> -3 ≄ -5 loại
a = 2, b = 4 <=> -6 ≄ -5 loại
a = 3, b = 6 <=> -9 ≄ -5 loại
a = 4, b = 7 <=> -3 ≄ -5 loại
a = 5, b = 9 <=> -6 ≄ -5 loại
Suy ra, không có số tự nhiên nào thỏa mãn điều kiện trên.
Gọi thương của phép chia 15 là k ( k thuộc N )
thương của phép chia 9 là m ( m thuộc N )
tổng của hai số này là A
Ta có :
15k + 6 = 3( 5k + 2 ) = A Đến đây ta suy ra a chia hết cho 3
9m + 1 = 3(3m) +1 = A Vì 3(3m) chia hết cho 3 nên khi công thêm 1 thì 9m + 1 không chia hết cho 3 hay a không chia hết cho 3
Vậy suy ra không có số tự nhiên nào chia cho 15 dư 6 còn chia cho 9 thì dư 1
chứng minh rằng không có số tự nhiên nào chia cho 15 dư 6 mà chia cho 9 dư 1
chứng minh rằng không có số tự nhiên nào chia cho 15 dư 6 còn chia 9 thì dư 1
Số đó chia 15 dư 6:
15 chia hết cho 3.
6 chia hết cho 3.
=>Số đó chia hết cho 3.
Vậy số đó chia 9 sẽ dư 1 số chia hết cho 3.
(đpcm)
Học totos^^
Gọi số tự nhiên đó là n.
n chia 15 dư 6 => n = 15a + 6 (với a = số tự nhiên nào đó)
n chia 9 dư 1 => n = 9b + 1 (với b = số tự nhiên nào đó)
Vậy 15a + 6 = 9b + 1
9b - 15a = 6 - 1 = 5
Mà 15a chia hết cho 3
9b chia hết cho 3
=> (9b - 15a) chia hết cho 3
=> 5 phải chia hết cho 3 (vô lí)
Vậy không tồn tại số tự nhiên nào thỏa mãn yêu cầu bài toán (điều phải chứng minh)
Giả sử có số a thuộc N thỏa mãn cả hai điều kiện trên thì a= 15b+6 chia hết cho 3, a=9c+1 không chia hết cho 3
Đó là điều mâu thuẫn.
Vậy không có số tự nhiên nào thỏa mãn.(đpcm)
Chứng minh rằng không có số tự nhiên nào chia 15 dư 6 còn chia cho 9 thì dư 1.
Vì số đó chia cho 15 dư 6 nên số đó có dạng 15k+6=3.5.k+3.2=3.(5k+2) chia hết cho 3
Nếu số đó chia cho 9 dư 1 thì số đó ko chia hết cho 3
CHỨNG MINH RẰNG:
KHÔNG CÓ SỐ TỰ NHIÊN NÀO CHIA CHO 15 DƯ 6 CÒN CHIA CHO 9 DƯ 1