Cho a/b <c/d ,(b>0 ,a,b thuộc Z ,b,d>o)
chứng minh a/b < c + a /b+d
Cho hai số hữu tỉ a/b và c/d (a,b,c,d thuộc z; b>0, d>0), trong đó a/b<c/d. Chứng minh rằng
a)a/d < b/c
b)a/b<a+c/b+d<c/d
Cho hai số hữu tỉ a/b và c/d (a,b,c,d thuộc z; b>0, d>0), trong đó a/b<c/d. Chứng minh rằng
a)a/d < b/c
b)a/b<a+c/b+d<c/d
cho a/b = c/d ( a,b,c,d thuộc Z và b,d khác 0 ). Chứng minh rằng a+b/b = c+d/d
\(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\)\(\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
\(\Rightarrow\)\(\frac{a+b}{b}=\frac{c+d}{d}\)
Cho a,b,c,d thuộc Z, a>b>c>d và a,b,c,d khác 0. Chứng minh nếu a/b=c/d thì a+d>b+c
Cho 4 số nguyên a, b, c, d (b, d < 0) và (a, b) = (c, d) = 1
a) Chứng minh nếu a/b + c/d thuộc Z thì b=d
b) Tìm các số dương a, b, c thỏa 1/a + 1/b + 1/c thuộc Z
1. cho a,b,c,d thuộc Z và b,d > 0
a. nếu a/b >c/d , chứng minh ad > cd
b . nếu ad >bc , chứng minh a/b > c/d
cho các số hữu tỉ x=a/b,y=c/d. z=a+c/b+d(a,b,c,d thuộc Z;b,d >0).Chứng minh rằng nếu x<y thì x<z<y
+)Vì x<y
Suy ra a/b<c/d
Suy ra a.b+a.d<b.c+b.a
Suy ra a.(b+d)<b.(c+a)
Suy ra a/b<c+a/b+d
Suy ra a/b<c+a/b+d<c/d
Suy ra x<z<y
Cho a/b >c/D ( a,b,c,D thuộc Z, b ,d >0). Chứng minh ad>bc
Cho 2 phân số a/b và c/d (a,b,c,d thuộc Z ;b và d >0 )
Chứng minh a/b bé hơn c/d và ngược lại