\(\frac{4}{3}\cdot\frac{4}{7}+\frac{4}{7}\cdot\frac{4}{11}+.....+\frac{4}{95}\cdot\frac{4}{99}\)
a) \(\left(\frac{11}{4}\cdot\frac{-5}{9}-\frac{4}{9}\cdot\frac{11}{4}\right)\cdot\frac{8}{33}\)
b) \(\frac{-1}{4}\cdot\frac{152}{11}+\frac{68}{4}\cdot\frac{-1}{11}\)
c) \(\frac{-2}{3}\cdot\frac{4}{5}+\frac{2}{3}\cdot\frac{3}{5}\)
d) \(\left(\frac{1}{2}-1\right)\cdot\left(\frac{1}{3}-1\right)\cdot\left(\frac{1}{4}-1\right)\cdot....\cdot\left(\frac{1}{100}-1\right)\)
e) \(\frac{3}{2^2}\cdot\frac{8}{3^2}\cdot\frac{15}{4^2}\cdot...\cdot\frac{8^{99}}{30^2}\)
a) \(\left(\frac{11}{4}.\frac{-5}{9}-\frac{4}{9}.\frac{11}{4}\right).\frac{8}{33}\)
=\(\frac{11}{4}\left(-\frac{5}{9}-\frac{4}{9}\right).\frac{8}{33}\)
=\(\frac{11}{4}\cdot-1\cdot\frac{8}{33}\)
=\(-\frac{11}{4}\cdot\frac{8}{33}\)
=\(-\frac{2}{3}\)
b)\(-\frac{1}{4}\cdot\frac{152}{11}+\frac{68}{4}\cdot-\frac{1}{11}\)
=\(\frac{-1.152}{4.11}+\frac{68}{4}\cdot\frac{-1}{11}\)
=\(\frac{-1.152}{11.4}+\frac{68}{4}\cdot\frac{-1}{11}\)
=\(\frac{-1}{11}\cdot\frac{152}{4}+\frac{68}{4}\cdot\frac{-1}{11}\)
=\(\frac{-1}{11}\cdot\left(\frac{152}{4}+\frac{68}{4}\right)\)
=\(\frac{-1}{11}\cdot55=-5\)
c)\(\frac{-2}{3}\cdot\frac{4}{5}+\frac{2}{3}\cdot\frac{3}{5}\)
=\(-1\cdot\frac{2}{3}\left(\frac{4}{5}+\frac{3}{5}\right)\)
=\(-1\cdot\frac{2}{3}\cdot\frac{7}{5}\)
=\(-\frac{2}{3}\cdot\frac{7}{5}\)
=\(\frac{-14}{15}\)
d) chưa nghĩ ra nhé
e) bạn chép sai đề bài rồi
mk mới kiểm tra 45 phút nên biết
đề bài nè
\(\frac{3}{2^2}\cdot\frac{8}{3^2}\cdot\frac{15}{4^2}\cdot...\cdot\frac{899}{30^2}\)
=\(\frac{1.3}{2^2}\cdot\frac{2.4}{3^2}\cdot\frac{3.5}{4^2}\cdot...\cdot\frac{29.31}{30^2}\)
=\(\frac{1.3.2.4.3.5...29.31}{2.2.3^2.4^2...30.30}\)
=\(\frac{1.2.3^2.4^2.5^2....29^2.30.31}{2.2.3^2.4^2.5^2....29^2.30.30}\)
=\(\frac{1.31}{2.30}\)
=\(\frac{31}{60}\)
a)trong ngoac bn dat thau so chung la 11/4 rui tinh binh thuong b)bn tu lam nhe c)dat thua so chung d)tinh trong ngoac ra rui nhan vs e) mk bo tay
So sánh M và N, biết
\(M=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}\)và \(N=\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\)
M=(1.3.5.7.....99)/(2.4.6.8.....100)
số số hạng của tử = (99-1)/2 +1 = 50 -> 1.3.5.7....99= (99+1)*50/2 =2500
số số hạng của mẫu = (100-2)/2+1 =50 -> 2.4.6.8....100= (100+2)*50/2 =2550
--> M= 2500/2550 =50/51
Làm tương tự với N ta có kq N=51/52 ->M/N= 2600/2601 -> M<N
Vào hướng dẫn viết công thức, hình vẽ ở cuối trang tạo câu hỏi và chọn video đầu ấy
tính bằng cách thuận tiện nhất
a,\(\frac{6}{7}\cdot\frac{16}{15}\cdot\frac{7}{6}\cdot\frac{21}{32}\)b, \(\frac{21}{17}\cdot\frac{13}{14}\cdot56\cdot\frac{3}{42}\) c,\(\frac{7}{4}\cdot\frac{11}{21}+\frac{11}{21}\cdot\frac{5}{4}\) d,\(\frac{23}{14}\cdot\frac{6}{14}-\frac{9}{14}\cdot\frac{6}{13}\)
a, \(\frac{6}{7}.\frac{16}{15}.\frac{7}{6}.\frac{21}{32}=\frac{6}{7}.\frac{7}{6}.\frac{16}{15}.\frac{21}{32}\)=\(1.\frac{16}{15}.\frac{21}{32}=\frac{7}{5.2}=\frac{7}{10}\)
Phần b T2
c,\(\frac{7}{4}.\frac{11}{21}+\frac{11}{21}.\frac{5}{4}=\frac{11}{21}.\left(\frac{7}{4}+\frac{5}{4}\right)\)=\(\frac{11}{21}.3=\frac{11}{7}\)
tính nhanh
A= \(\frac{19}{23}\cdot\frac{-4}{7}-\frac{4}{23}\cdot\frac{2}{7}\)
B= \(\frac{3}{5}+\frac{2}{5}\cdot\frac{-11}{3}+\frac{2}{3}\cdot\frac{-2}{5}+\frac{14}{15}\)
a) A = \(\frac{19}{23}.\frac{-4}{27}-\frac{4}{23}.\frac{2}{7}\)
= \(\frac{19}{7}.\frac{-4}{23}+\frac{-4}{23}.\frac{2}{7}\)
= \(\frac{-4}{23}.\left(\frac{19}{7}+\frac{2}{7}\right)\)
= \(\frac{-4}{23}.3\)
= \(\frac{-12}{23}\)
b) B = \(\frac{3}{5}+\frac{2}{5}.\frac{-11}{3}+\frac{2}{3}.\frac{-2}{5}+\frac{14}{15}\)
= \(\frac{9+14}{15}+\frac{2}{5}.\frac{-11}{3}+\frac{-2}{3}.\frac{2}{5}\)
= \(\frac{23}{15}+\frac{2}{5}\left(\frac{-11}{3}+\frac{-2}{3}\right)\)
= \(\frac{23}{15}+\frac{2}{5}.\frac{-13}{3}\)
= \(\frac{23}{15}+\frac{-26}{15}\)
= \(\frac{-3}{15}=\frac{-1}{5}\)
1. Tính tổng
\(\frac{1}{2}\cdot\frac{1}{3}\cdot+\frac{1}{3}\cdot\frac{1}{4}+\frac{1}{4}\cdot\frac{1}{5}+\frac{1}{5}\cdot\frac{1}{6}+\frac{1}{6}\cdot\frac{1}{7}+\frac{1}{7}\cdot\frac{1}{8}+\frac{1}{8}\cdot\frac{1}{9}\)
\(\frac{1}{2}\cdot\frac{1}{3}+\frac{1}{3}\cdot\frac{1}{4}+\frac{1}{4}\cdot\frac{1}{5}+\frac{1}{5}\cdot\frac{1}{6}+\frac{1}{6}\cdot\frac{1}{7}+\frac{1}{7}\cdot\frac{1}{8}+\frac{1}{8}\cdot\frac{1}{9}\)
\(=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)
\(=\frac{1}{2}-\frac{1}{9}=\frac{7}{18}\)
\(\frac{1}{2}\cdot\frac{1}{3}+\frac{1}{3}\cdot\frac{1}{4}+...+\frac{1}{8}\cdot\frac{1}{9}\)
\(=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{8\cdot9}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)
\(=\frac{1}{2}-\frac{1}{9}\)
* LÀM NỐT *
#Louis
1/2.1/3+1/3.1/4+1/4.1/5+...+1/8.1/9
=1/2.3=1/3.4+1/4.5+...+1/8.9\
=1/2-1/3+1/3-1/4=1/4-1/5+...+1/8.1/9
=1/2-1/9
=9/18-2/18
=7/18
HỌC TỐT NHA BẠN
Thực hiện phép tính hợp lí nếu có thể:
a/ \(\frac{6}{7}+\frac{1}{7}\cdot\frac{2}{7}+\frac{1}{7}\cdot\frac{5}{7}\)
b/\(\frac{2}{3}\cdot\frac{5}{7}\cdot\frac{-3}{8}\cdot\frac{11}{5}\)
c/\(11\frac{4}{7}-\left(2\frac{3}{5}+5\frac{4}{7}\right)\)
d/\(\frac{3}{4}-\frac{3}{4}\cdot\left(\frac{2}{3}+1\right)\)
e/\(0.5\cdot1\frac{1}{3}\cdot75\%:\frac{2}{5}+\frac{3}{5}\)
f/\(\frac{6}{7}+\frac{5}{8}:5-\frac{3}{16}\cdot\left(-2\right)^2\)
g/\(1\frac{3}{8}+\left(\frac{-5}{6}+\frac{7}{12}\right):\frac{2}{3}\)
h/\(1\frac{1}{4}\cdot\frac{-3}{2}+50\%\cdot98\)
i/\(\left(2,09:1,1+4,5\right)\cdot\frac{5}{8}+4,32\)
kazuto kirigaya thật là bt làm ko đó ko bt thì nói đi còn bt thì làm đi
trời ơi bài dễ thế này tự làm đi còn hỏi
Đã biết thì đã không hỏi. Đồ kazuto kirigaya xấu tính!
Chứng minh rằng:
\(A=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\frac{7}{8}\cdot...\cdot\frac{99}{100}
Đặt \(B=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}.\frac{8}{9}....\frac{100}{101}\)
Nhận xét: Nếu \(\frac{a}{b}
Chứng minh \(A=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\frac{7}{8}\cdot...\cdot\frac{99}{100}<\frac{1}{\sqrt{151}}\)
Cho M=\(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot....\cdot\frac{99}{100}\)
N=\(\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot......\cdot\frac{100}{101}\)
a, Tính M\(\times\)N
b, CM M<\(\frac{1}{10}\)