Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Anh Thiện
Xem chi tiết
Nguyễn Tiến Dũng
22 tháng 6 2017 lúc 19:57

a)\(\frac{13}{15}+\frac{13}{35}+\frac{13}{63}+\frac{13}{99}\)

\(=\frac{13}{3.5}+\frac{13}{5.7}+\frac{13}{7.9}+\frac{13}{9.11}\)

\(=\frac{13}{2}\left(\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{9}-\frac{1}{11}\right)\)

\(=\frac{13}{2}\left(\frac{1}{3}-\frac{1}{11}\right)\)

\(=\frac{13}{2}\cdot\frac{8}{33}\)

\(=\frac{52}{33}\)

uzumaki naruto
22 tháng 6 2017 lúc 19:58

a) Đặt A= 13/15 + 13/35 + 13/63 + 13/99

A = 13/2 ( 2/15 + 2/35 + 2/63 + 2/99)

A= 13/2 ( 2/ 3.5 + 2/5.7 + 2/7.9 + 2/9.11)

A= 13/2 ( 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11)

A= 13/2 ( 1/3 - 1/11) 

A= 13/2 . 8/33

A= 52/33  

Đức Phạm
23 tháng 6 2017 lúc 7:14

\(b,\)\(\left(\frac{15}{1.2.3}+\frac{15}{2.3.4}+\frac{15}{3.4.5}+...+\frac{15}{18.19.20}\right).x=1\)

\(\left[\frac{15}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{15}{18.19.20}\right)\right].x=1\)

\(\left[\frac{15}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+\frac{1}{4.5}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\right].x=1\)

\(\left[\frac{15}{2}.\left(\frac{1}{1.2}-\frac{1}{19.20}\right)\right].x=1\)

\(\left[\frac{15}{2}.\frac{189}{380}\right].x=1\)

\(\frac{567}{152}.x=1\)

\(x=1-\frac{567}{152}\)

\(\Rightarrow x=-\frac{415}{152}\)

Nguyễn Bá Hùng
Xem chi tiết
No Name B
18 tháng 8 2017 lúc 22:02

<=> \(\left(\frac{1}{3\cdot5}+\frac{1}{5.7}+...+\frac{1}{13\cdot15}\right)+x=\frac{17}{15}\)

<=> \(\frac{1}{2}\cdot\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-...-\frac{1}{15}\right)+x=\frac{17}{15}\)

<=>\(\frac{1}{2}\cdot\left(\frac{1}{3}-\frac{1}{15}\right)+x=\frac{17}{15}\)

<=> \(\frac{2}{15}+x=\frac{17}{15}\)

=> x = 1

Nguyễn Hà My
18 tháng 8 2017 lúc 22:07

(1/3.5+1/5.7+1/7.9+1/9.11+1/11.13+1/13.15)+x=17/15

[2.(1/3-1/5+1/5-1/7+...+1/13-1/15)]+x=17/15

[2.(1/3-1/15)]+x=17/15

(2.4/15)+x=17/15

6/15+x=17/15

x=17/15-6/15

x=11/15

Lê Đức Thịnh
Xem chi tiết
Uyên
25 tháng 7 2018 lúc 20:02

\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\)

\(=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{13\cdot15}\)

\(=\frac{1}{2}\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{13\cdot15}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{15}\right)\)

\(=\frac{1}{2}\cdot\frac{14}{15}\)

\(=\frac{7}{15}\)

kudo shinichi
25 tháng 7 2018 lúc 20:08

Sửa đề chút nhé:

\(\left(1+3+5+7+...+2009+2011\right).\left(125125.127-127127.125\right)\)

\(=\left(1+3+5+7+...+2009+2011\right).\left(125.1001.127-127.1001.125\right)\)

\(=\left(1+3+5+7+...+2009+2011\right).0\)

\(=0\)

Ý b tham khảo bài bạn nguyen thi thuy linh nhé

Fudo
25 tháng 7 2018 lúc 20:33

\(\text{Tính nhanh : }\)

\(a,\text{ }1+3+5+7+9+\text{...}+2007+2009+2011\cdot\left(125125\cdot127+127127\cdot125\right)\)

\(=\left\{\left(2009-1\right)\text{ : }2+1\right\}\cdot\left(2009+1\right)\text{ : }2+2011\cdot\left(125125\cdot127+127127\cdot125\right)\)

\(=1005\cdot2010\text{ : }2+2011\cdot\left(125125\cdot127+127127\cdot125\right)\)

\(=2020050\text{ : }2+2011\cdot\left(125125\cdot127+127127\cdot125\right)\)

\(=1010025+2011\cdot\left(125125\cdot127+127127\cdot125\right)\)

\(=1010025+2011\cdot\left(15890875+15890875\right)\)

\(=1010025+2011\cdot15890875\cdot2\)

\(=1010025+31956549625\cdot2\)

\(=1010025+63913099250\)

\(=63914109275\)

\(b,\text{ }\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\)

\(=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+\frac{1}{9\cdot11}+\frac{1}{11\cdot13}+\frac{1}{13\cdot15}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{13}-\frac{1}{15}\)

\(=1-\frac{1}{15}\)

\(=\frac{14}{15}\)

tôi là ai nhỉ
Xem chi tiết
Thân Phương Linh
8 tháng 3 2019 lúc 21:27

Mk ko biết lm nhưng cứ k thoải mái nha

SORRY

l
Xem chi tiết
Khuất Đăng Mạnh
Xem chi tiết
Đào Đức Mạnh
6 tháng 8 2015 lúc 9:53

\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)...\left(1+\frac{1}{99}\right)=\frac{3}{2}.\frac{4}{3}...\frac{100}{99}=\frac{100}{2}=50\)

Trần Đức Thắng
6 tháng 8 2015 lúc 9:57

 = \(\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot\cdot\cdot\cdot\frac{99}{98}\cdot\frac{100}{99}=\frac{3.4.5....99.100}{2.3.4....98.99}=\frac{100}{2}=50\)

Ngọc Nguyễn Minh
6 tháng 8 2015 lúc 9:59

\(\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).\left(1+\frac{1}{4}\right).........\left(1+\frac{1}{99}\right)\)

\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{99}{98}.\frac{100}{99}\)

\(=\frac{3.4.5....99.100}{2.3.4.5....98.99}\)

\(=\frac{100}{2}\)

\(=50\)

NOO PHƯỚC THỊNH
Xem chi tiết
Lucy Heartfilia
Xem chi tiết
hong pham
1 tháng 8 2016 lúc 22:10

Ta có:

 \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{99}\right).\left(1-\frac{1}{100}\right)\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{98}{99}.\frac{99}{100}\) \(=\frac{1.2.3...98.99}{2.3.4...99.100}=\frac{1}{100}\)

nha

phuong ta tuong
Xem chi tiết