1) \(Cho\frac{a}{b}=\frac{b}{c}=\frac{c}{2010}=\frac{2010}{a}\)
và \(a+b+c\ne2010\)
Tính a+b+c
cho a,b,c>0 và abc=1. CM \(\frac{1}{a^{2010}+b^{2010}+1}+\frac{1}{b^{2010}+c^{2010}+1}+\frac{1}{c^{2010}+a^{2010}+1}\le1\)
Cho a+b+c=2010 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{3}\)
Tính S=\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
a+b+c = 2010 => a+b=2010-c ; b+c=2010-a ; c+a=2010-b
=> S = a/2010-a + b/2010-b + c/2010-c = 2010/2010-a - 1 + 2010/2010-b -1 + 2010/2010-c - 1
= 2010/b+c - 1 + 2010/c+a - 1 + 2010/a+b - 1
= 2010.(1/b+c + 1/c+a + 1/a+b) - 3
= 2010.1/3 - 3 = 667
Vậy S = 667
Tk mk nha
Ta có: \(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=2010\cdot\frac{1}{3}\)
\(\Rightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=\frac{2010}{3}\)
\(\Rightarrow1+\frac{c}{a+b}+1+\frac{a}{b+c}+1+\frac{b}{c+a}=\frac{2010}{3}\)
\(\Rightarrow S+3=\frac{2010}{3}\)
\(\Rightarrow S=\frac{2010}{3}-3=\frac{2001}{3}=667\)
Ta có \(S+3=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{c+a}+1\right)+\left(\frac{c}{a+b}+1\right)\)
=\(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)
\(=\frac{2010}{3}=670\)
\(\Rightarrow S=667\)
Cho
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{2010}=\frac{2010}{a}\) và \(a+b+c\ne-2010\)
Tính \(a+b+c=?\)
Giusp mình nha mình đang cần gấp
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{2010}=\frac{2010}{a}=\frac{a+b+c+2010}{a+b+c+2010}=1\)
+) \(\frac{a}{b}=1\Rightarrow a=b\)
+) \(\frac{b}{c}=1\Rightarrow b=c\)
+) \(\frac{c}{2010}=1\Rightarrow c=2010\)
\(\Rightarrow a=b=c=2010\)
Ta có: \(a+b+c=2010+2010+2010=2010.3=6030\)
Vậy \(a+b+c=6030\)
Cho số A=2011; b khác 2009; c khác 2010 và \(\frac{a-2009}{b-2011}=\frac{b-2011}{c-2010}:\frac{2011-b}{2010-c}=\frac{2010-c}{2009-a}\)
Tìm tỉ số \(\frac{b}{c}\)?
\(\frac{b-2011}{c-2010}:\frac{2011-b}{2010-c}=\frac{b-2011}{c-2010}\cdot\frac{-\left(c-2010\right)}{-\left(b-2011\right)}=1\)
\(\frac{a-2009}{b-2011}=\frac{2010-c}{2009-a}=\frac{-\left(c-2010\right)}{-\left(a-2009\right)}=\frac{c-2010}{a-2009}=1\Rightarrow a-2009=c-2010=b-2011\)
\(\Rightarrow a=c-1=b-2\Rightarrow c=b-1\Rightarrow\frac{b}{c}=\frac{b}{b-1}\)=.=' ko chắc lăm
Thanks!!! Nhưng xin lỗi mặc dù phải là -1. Cảm ơn bạn
cho a+b+c\(\ne\)6030 và 2010c-2009=0
Tính a và b biết \(\frac{a-2010}{b-20010}\)= \(\frac{b-2010}{c-2010}\)= \(\frac{c-2010}{a-2010}\)
cho a+b+c=2010 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{3}\)
tính \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{2010-\left(b+c\right)}{b+c}+\frac{2010-\left(c+a\right)}{c+a}+\frac{2010-\left(a+b\right)}{a+b}\)
\(=\frac{2010}{b+c}-\frac{b+c}{b+c}+\frac{2010}{a+b}-\frac{a+b}{a+b}+\frac{2010}{a+c}-\frac{a+c}{a+c}=\left(\frac{2010}{b+c}+\frac{2010}{a+b}+\frac{2010}{a+c}\right)-\left(1+1+1\right)\)
\(=2010.\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)-3=2010.\frac{1}{3}-3=670-3=667\)
Cho số a=2011; b khác 2009; c khác 2010 và \(\frac{a-2009}{b-2011}=\frac{b-2011}{c-2010}:\frac{2011-b}{2010-c}=\frac{2010-c}{2009-a}\)
Tìm tỉ số \(\frac{b}{c}\)?
Giúp tui zới!!!!
cho a+b+c=2010 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{3}\)
Tính S=\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
cho biết \(\frac{a}{b}\)= \(\frac{b}{c}\)= \(\frac{c}{2010}\)= \(\frac{2010}{a}\)
va a+b+c khác -2010. Tính a, b, c
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{2010}=\frac{2010}{a}=\frac{a+b+c+2010}{b+c+2010+a}=1\)
=>c=2010.1=2010, a=2010:1=2010, b=c=2010