Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tuấn Anh Đỗ
Xem chi tiết
Đậu Mạnh Dũng
Xem chi tiết
Nguyễn Anh Quân
8 tháng 1 2018 lúc 21:30

a+b+c = 2010 => a+b=2010-c ; b+c=2010-a ; c+a=2010-b

=> S = a/2010-a + b/2010-b + c/2010-c = 2010/2010-a - 1 + 2010/2010-b -1 + 2010/2010-c - 1

= 2010/b+c - 1 + 2010/c+a - 1 + 2010/a+b - 1

= 2010.(1/b+c + 1/c+a + 1/a+b) - 3 

= 2010.1/3 - 3 = 667

Vậy S = 667

Tk mk nha

ST
8 tháng 1 2018 lúc 21:34

Ta có: \(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=2010\cdot\frac{1}{3}\)

\(\Rightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=\frac{2010}{3}\)

\(\Rightarrow1+\frac{c}{a+b}+1+\frac{a}{b+c}+1+\frac{b}{c+a}=\frac{2010}{3}\)

\(\Rightarrow S+3=\frac{2010}{3}\)

\(\Rightarrow S=\frac{2010}{3}-3=\frac{2001}{3}=667\)

Trần Nguyễn Khánh Linh
8 tháng 1 2018 lúc 21:35

Ta có \(S+3=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{c+a}+1\right)+\left(\frac{c}{a+b}+1\right)\)

=\(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)

\(=\frac{2010}{3}=670\)

\(\Rightarrow S=667\)

Alexandra
Xem chi tiết
Nguyễn Huy Tú
22 tháng 11 2016 lúc 11:41

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{2010}=\frac{2010}{a}=\frac{a+b+c+2010}{a+b+c+2010}=1\)

+) \(\frac{a}{b}=1\Rightarrow a=b\)

+) \(\frac{b}{c}=1\Rightarrow b=c\)

+) \(\frac{c}{2010}=1\Rightarrow c=2010\)

\(\Rightarrow a=b=c=2010\)

Ta có: \(a+b+c=2010+2010+2010=2010.3=6030\)

Vậy \(a+b+c=6030\)

Đặng Đúc Lộc
Xem chi tiết
Đặng Đúc Lộc
26 tháng 2 2019 lúc 21:49

Làm ơn giúp mk!!

Nguyệt
26 tháng 2 2019 lúc 22:07

\(\frac{b-2011}{c-2010}:\frac{2011-b}{2010-c}=\frac{b-2011}{c-2010}\cdot\frac{-\left(c-2010\right)}{-\left(b-2011\right)}=1\)

\(\frac{a-2009}{b-2011}=\frac{2010-c}{2009-a}=\frac{-\left(c-2010\right)}{-\left(a-2009\right)}=\frac{c-2010}{a-2009}=1\Rightarrow a-2009=c-2010=b-2011\)

\(\Rightarrow a=c-1=b-2\Rightarrow c=b-1\Rightarrow\frac{b}{c}=\frac{b}{b-1}\)=.=' ko chắc lăm

Đặng Đúc Lộc
26 tháng 2 2019 lúc 22:11

Thanks!!! Nhưng xin lỗi mặc dù phải là -1. Cảm ơn bạn

Phạm Khánh Linh
Xem chi tiết
boy
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
28 tháng 5 2015 lúc 15:23

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{2010-\left(b+c\right)}{b+c}+\frac{2010-\left(c+a\right)}{c+a}+\frac{2010-\left(a+b\right)}{a+b}\)

\(=\frac{2010}{b+c}-\frac{b+c}{b+c}+\frac{2010}{a+b}-\frac{a+b}{a+b}+\frac{2010}{a+c}-\frac{a+c}{a+c}=\left(\frac{2010}{b+c}+\frac{2010}{a+b}+\frac{2010}{a+c}\right)-\left(1+1+1\right)\)

\(=2010.\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)-3=2010.\frac{1}{3}-3=670-3=667\)

Đặng Đúc Lộc
Xem chi tiết
doanhoangdung
Xem chi tiết
phạm phạm
Xem chi tiết
Nguyễn Linh Chi
26 tháng 10 2018 lúc 12:06

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{2010}=\frac{2010}{a}=\frac{a+b+c+2010}{b+c+2010+a}=1\)

=>c=2010.1=2010, a=2010:1=2010, b=c=2010