Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ma Kết Đẹp Trai
Xem chi tiết
Nguyễn Thị Thùy Dương
21 tháng 5 2017 lúc 20:55

\(\frac{a}{b}=\frac{b}{3c}=\frac{c}{9a}=k\Rightarrow\hept{\begin{cases}a=b.k\\b=c.3k\\c=c.9k\end{cases}\Leftrightarrow abc=abc.27k^3.}\)

\(\Leftrightarrow k=\frac{1}{3}\Rightarrow\frac{b}{3c}=\frac{1}{3}\Rightarrow b=c.\)

Nguyễn Thị Thùy Dương
21 tháng 5 2017 lúc 20:57

Bài hình do ngại, mình chụp ảnh ko đưa lên đây dc. nên thôi nhé .

Ma Kết Đẹp Trai
21 tháng 5 2017 lúc 21:03

giúp mk đi nếu đúng mk k bn 10 cái

My Love bost toán
Xem chi tiết
Kiyotaka Ayanokoji
30 tháng 5 2020 lúc 21:11

Bài giải :

Gọi E,D,F lần lượt là hình chiếu của I trên các cạnh BC,AB,AC.

Vì I là giao điểm các đường phân giác trong tam giác ABC nên : ID = IE = IF = x

- Ta có : Tam giác ADI vuông tại D có góc DAI = \(45^o\)

⇒ Tam giác ADI vuông cân tại D .

hay AD = ID = x

- Xét hai tam giác vuông AID và tam giác vuông AIF có :

Tam giác vuông AID = Tam giác vuông AIF ( cạnh huyền-góc nhọn )

⇒AD = AF = x

Vậy ID = IE =IF = AD = AF = x

Xét hai tam giác vuông BEI và tam giác vuông BDI có :

Tam giác vuông BDI = tam giác vuông BEI ( cạnh huyền - góc nhọn)

nên BD = BE = y

- Tương tự ta có : tam giác vuông CIE = tam giác vuông CIF

nên CE = CF = z

Ta có :

\(CI^2=CE^2+IE^2=z^2+x^2\left(1\right)\)

Mà : \(\frac{\left(BC-AB\right)^2+AC^2}{2}=\frac{\left[\left(y+z\right)^2-\left(x+y\right)^2\right]+\left(x+z\right)^2}{2}\)

                                                   \(=\frac{\left(z-x\right)^2+\left(x+z\right)^2}{2}=\frac{2x^2+2z^2}{2}=x^2+z^2\left(2\right)\)

Từ (1) và (2) ta có \(CI^2=\frac{\left(BC-AB\right)^2+AC^2}{2}\)

Khách vãng lai đã xóa
Không Tên
Xem chi tiết
hoangthanhphong
Xem chi tiết
Ba Thị Bích Vân
Xem chi tiết
Nguyễn Huy Tú
26 tháng 5 2017 lúc 19:56

Bạn đừng đăng bài của cuộc thi bên mình nhé, nếu bạn muốn biết đáp án thì để hết vòng 1 mình sẽ làm

Nguyễn Thị Phương Thảo
Xem chi tiết
Duong Thuc Hien
Xem chi tiết
Nguyễn Xuân Anh
6 tháng 2 2018 lúc 0:03

Bài 1:

Áp dụng tính chất đường phân giác của tam giác ta có:

\(\frac{BD}{DC}=\frac{AB}{AC}=\frac{12}{18}=\frac{2}{3}\)

\(\Rightarrow\frac{BD}{2}=\frac{DC}{3}=\frac{BD+DC}{2+3}=\frac{BC}{5}\Rightarrow\frac{BD}{BC}=\frac{2}{5}\)

Kẻ \(DK//BE\left(K\in AC\right)\text{ ta có:}\)

\(\frac{AE}{EK}=\frac{AI}{ID}=2;\frac{EK}{EC}=\frac{BD}{BC}=\frac{2}{5}\)

Do đó:\(\frac{AE}{EK}\cdot\frac{EK}{EC}=\frac{AE}{EC}=\frac{2}{5}.2=\frac{4}{5}\)

b)\(\text{Ta có:}\)

\(\frac{AE}{EC}=\frac{4}{5}\Rightarrow\frac{AE}{4}=\frac{EC}{5}=\frac{AE+EC}{4+5}=\frac{AC}{9}=\frac{18}{9}=2\)

\(\Rightarrow AE=8cm,EC=10cm\)

Nguyễn Xuân Anh
5 tháng 2 2018 lúc 23:15

bn ơi bài 1 ý a)  chỉ có thể tính tỉ lệ thôi ko tính đc ra số hẳn đâu

Nguyễn Đình Toàn
Xem chi tiết
Nguyễn Đình Toàn
Xem chi tiết