cho hệ phương trình: {kx - y + 2 & 3x + ky = 5}
tìm k để hệ phương trình có 1 nghiệm duy nhất (x;y) thỏa mãn x + y < 1
Cho hệ phương trình:
k x + y = 7 2 x - y = - 4
Gọi (x; y) là nghiệm của hệ phương trình . Xác định giá trị của k để P = x 2 + y 2 đạt giá trị nhỏ nhất.
Với k + 2 ≠ 0 ⇔ k ≠ -2 thì hệ phương trình có nghiệm :
Ta có:
P = x 2 + y 2 = x 2 + 2 x + 4 2
= 5 x 2 + 16 x + 16
Vậy với k = (-31)/8 thì biểu thức P = x 2 + y 2 đạt giá trị nhỏ nhất
Cho hệ phương trình: \(\hept{\begin{cases}kx-y=2\\x+ky=1\end{cases}}\)
a, Giải hệ phương trình khi k = 5
b, Tìm k để hệ phương trình có nghiệm duy nhất thỏa mãn điều kiện \(x+y=\frac{-3}{k^2+1}\)
Cho hệ phương trình: \(\hept{\begin{cases}kx-y=5\\x+y=1\end{cases}}\)
a/Với giá trị nào của k thì hệ phương trình có nghiệm là \(\left(x;y\right)=\left(2;-1\right)\)
b/Với giá trị nào của k thì hệ phương trình có nghiệm duy nhất?hệ phương trình vô nghiệm?
a) Ta có hệ phương trình \(\hept{\begin{cases}kx-y=5\\x+y=1\end{cases}}\) Thay nghiệm \(\left(x,y\right)=\left(2,-1\right)\) ta có hệ mới là :
\(\hept{\begin{cases}2k-1=5\\2-1=1\end{cases}\Leftrightarrow k=3}\)
b) Ta có : \(\hept{\begin{cases}kx-y=5\\x+y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=1-x\\kx-1-x=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=1-x\\x\left(k-1\right)=6\end{cases}}\)
Để hệ phương trình có nghiệm duy nhất : \(\Leftrightarrow k-1\ne0\) \(\Leftrightarrow k\ne1\)
Để hệ phương trình vô nghiệm \(\Leftrightarrow k-1=0\Leftrightarrow k=1\)
P/s : Em chưa học lớp 9 nên không biết cách trình bày cho lắm :))
Hai hệ phương trình k x + 3 y = 3 - x + y = 1 ; x + y = 1 - x + y = 1 là tương đương khi k bằng?
A. k = -3
B. k = 1
C. k = 3
D. k = -1
Chọn đáp án C.
Do đó 2 hệ phương trình tương đương khi k/3=1 ⇔k=3
Cho hệ phương trinh\(\hept{\begin{cases}x+ky=3\\kx+4y=6\end{cases}}\)
Tìm giá trị của k để hệ phương trình có nghiệm duy nhất sao cho x > 1 và y >0
hệ pt trên tương đương:\(\hept{\begin{cases}x=3-ky\\k\times\left(3-ky\right)+4y=6\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=3-ky\\-y\left(k^2-4\right)=6-3k\end{cases}}\)
*với k=2 ,hệ pt có vô số nghiệm.*với x=-2,hệ pt vô nghiệm.* với \(x\ne\pm2,\)hệ pt tương đương:
\(\hept{\begin{cases}x=3-ky\\y=\frac{6-3k}{-\left(k^2-4\right)}\end{cases}\Leftrightarrow\hept{\begin{cases}x=3-ky\\y=\frac{3}{k+2}\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}x=3-\frac{3k}{k+2}\\y=\frac{3}{k+2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{6}{k+2}\\y=\frac{3}{k+2}\end{cases}}\)
vậy \(\hept{\begin{cases}x>1\\y>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{6}{k+2}>1\\\frac{3}{k+2}>0\end{cases}\Leftrightarrow\hept{\begin{cases}k+2< 6\\k+2>0\end{cases}}}\)\(\Leftrightarrow-2< k< 4\)
VẬY HỆ PHƯƠNG TRÌNH ĐÃ CHO CÓ NGHIỆM X>1,Y>O KHI VÀ CHỈ KHI -2<K<4 VÀ K\(\ne2\)
Ai giỏi toán làm giúp mình bài này với
Tìm k nguyên để hệ phương trình \(\hept{\begin{cases}x+y=2\\kx-y=k\end{cases}}\)có nghiệm nguyên
Ai giỏi toán làm giúp mình bài này với
Tìm k nguyên để hệ phương trình \(\hept{\begin{cases}x+y=2\\kx-y=k\end{cases}}\)có nghiệm nguyên
với giá trị nguyên nào của k thì nghiệm (x;y) của hệ phương trình kx-2y=3 và 3x+ky=4 thỏa mãn x>0 và y<0
Cho hệ phương trình kx+y=1
-x+y=1
a, Giai hệ với k=2 ( lam dc rùi)
b, Tìm k để hệ có vô số nghiệm
c, Tìm k để hệ co Nghiệm (x;y) thỏa mãn x>= 0, y>=0
Giai hộ mik ý b và c nhé cám ơn nhìu