A=1+1^2+1^2 mu 2 +1^2 mu ba +1^2 mu bon+...+1^2 mu 2012
rut gon
A = 1 +1 /2 +1/2 mu 2+ 1/2 mu 3 .+...... + 1/2 mu 2012
Cho S=1/5+2/5 mu 2+3/5 mu 3+...+2012/5 mu 2012
So sánh S với 1/3
Cho S =1/5+2/5 mu 2 +3/5mu 3 +4/5 mu 4+....+2012/5 mu 2012
So sánh S với 1/3
B=1/3+1/3 mu 3 +1/3 mu 5 +1/3 mu 7 + ...+1/3 mu 99
M= 3/1 mu 2 . 2 mu 2 +5/2 mu 2 . 3 mu 2+7/3 mu 2 . 4 mu 2 + ...+19= 9 mu 2 . 10 mu 2
7 × 3 mu x + 20 × 3 mu x = 3 mu 25
tính tổng
B= 7-7 mu 4 + 7 mu 4 -........+7 mu 301
A = 1 + 5 mũ 2 + 5 mu 4 + 5 mu 6 +.....+5 mu 200
tính
A= 1/7+1/7mu 2 + 1/7 mu 3+......+1/7mu 100
B=-4/5+4/5 mu 2 - 4/5 mu 3 + ....+4/5mu 200
tính A=25 mũ 8 + 25 mũ 4 + 25 mu 20 +......+25 mu 4 +1 / 25 mu 20 + 25 mu 28 + 25 mu 26 +.....= 25 mu 2 +1
7 × 3 mu x + 20 × 3 mu x = 3 mu 25
bai 4 , tinh gia tri bieu thuc ;
a,A=2 mu 1 + 2 mu 2 +2 mu 3 +......+2 mu 2019
b, B=1+3+3 mu 2 +3 mu 3 +......+3 mu 2020
\(a,A=2^1+2^2+2^3+...+2^{2019}\)
\(2A=2^2+2^3+2^4+...+2^{2020}\)
\(\Rightarrow2A-A=A=2^{2020}-2\)
\(B=1+3+3^2+3^3+...+3^{2020}\)
\(3B=3+3^2+3^3+...+3^{2021}\)
\(3B-B=2B=3^{2021}-1\)
\(B=\frac{3^{2021}-1}{2}\)
a,\(A=2^1+2^2+2^3+...+2^{2019}\)
\(2A=2^2+2^3+2^4+...+2^{2020}\)
\(2A-A=\left[2^2+2^3+2^4+...+2^{2020}\right]-\left[2^1+2^2+...+2^{2019}\right]\)
\(A=2^{2020}-2^1=2^{2020}-2\)
b, \(B=1+3+3^2+3^3+...+3^{2020}\)
\(3B=3+3^2+3^3+...+3^{2021}\)
\(3B-B=\left[3+3^2+3^3+...+3^{2021}\right]-\left[1+3+3^2+...+3^{2020}\right]\)
\(2B=3^{2021}-1\)
\(B=\frac{3^{2021}-1}{2}\)
a,Đặt A=2+22+23+...+22019
2A=2(2+22+23+...+22019)
2A=22+23+24+...+22020
2A-A=22+23+24+...+22020-2-22-23-...-22019
A=22020-2
Câu b thì nhân 3 lên rồi lấy 3B-B thi sẽ được 2B sau đó chia cho 2 là đượckết quả \(\frac{3^{2021}-3}{2}\)
Cm 1/2 mu 2 - 1/ 2mu 4 + 1/ 2 mu 6-...-1/2mu 4n -2 -1/2 mu 4n + ...+ 1/ 2 mu 2014 - 1/ 2 mu 2016 < 0,2
Cm 1/2 mu 2 - 1/ 2mu 4 + 1/ 2 mu 6-...-1/2mu 4n -2 -1/2 mu 4n + ...+ 1/ 2 mu 2014 - 1/ 2 mu 2016<0,2
Cm 1/2 mu 2 - 1/ 2mu 4 + 1/ 2 mu 6-...-1/2mu 4n -2 -1/2 mu 4n + ...+ 1/ 2 mu 2014 - 1/ 2 mu 2016<0,2
\(A=\frac{1}{2^2}-\frac{1}{2^4}+\frac{1}{2^6}-...+\frac{1}{2^{2014}}-\frac{1}{2^{2016}}\)
\(\Rightarrow2^2A=1-\frac{1}{2^2}+\frac{1}{2^4}-\frac{1}{2^6}+\frac{1}{2^8}-...+\frac{1}{2^{2012}}-\frac{1}{2^{2014}}\)
\(\Rightarrow2^2A+A=1+\left(\frac{1}{2^2}-\frac{1}{2^2}\right)+\left(\frac{1}{2^4}-\frac{1}{2^4}\right)+...+\left(\frac{1}{2^{2014}}-\frac{1}{2^{2014}}\right)-\frac{1}{2^{2016}}\)
\(\Rightarrow5A=1-\frac{1}{2^{2016}}< 1\Rightarrow A< \frac{1}{5}=0,2\)
đây là toán lớp 2 hả?
đây là toán lớp mấy thế