\(\frac{2}{1\times2}+\frac{2}{2\times3}+\frac{2}{2\times4}+....+\frac{2}{2013\times2014}\)
tính giá trị biểu thức một cách hợp lí:
P=\(\frac{2}{1\times2}+\frac{2}{2\times3}+\frac{2}{3\times4}+...+\frac{2}{2013\times2014}\)
\(P=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.......+\frac{1}{2013}-\frac{1}{2014}\right)\)
\(P=2.\left(1-\frac{1}{2014}\right)\)
\(P=2.\frac{2013}{2014}\)
\(P=\frac{2013}{1007}\)
\(P=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{2013.2014}\)
\(P=\frac{1}{2}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\right)\)
\(P=\frac{1}{2}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}\right)\)
\(P=\frac{1}{2}\left(1-\frac{1}{2014}\right)\)
\(P=\frac{1}{2}.\frac{2013}{2014}\)
\(P=\frac{2013}{4028}\)
\(\frac{1\times2}{2\times3}+\frac{2\times3}{3\times4}+\frac{3\times4}{4\times5}+...+\frac{98\times99}{99\times100}\)
\(=\frac{1.2}{99.100}\)
\(=\frac{2}{9900}=\frac{1}{4950}\)
Tính\(\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+\frac{1}{3\times4\times5}+...\frac{1}{2014\times2015\times2016}\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2014.2015.2016}\)
\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{2014.2015.2016}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2014.2015}-\frac{1}{2015.2016}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2015.2016}\right)\)
\(\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+\frac{1}{3\times4\times5}+...+\frac{1}{2014\times2015\times2016}=?\)
= 1/2 .( 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + 1/3.4 - 1/4.5 + .......+ 1/2014.2015 - 1/2015.2016)
= 1/2 ( 1/2 - 1/2015.2016)
Tính tiếp p nhé.
Tinh:
\(\frac{2}{1\times2}+\frac{2}{2\times3}+\frac{2}{3\times4}+......+\frac{2}{98\times99}+\frac{2}{99\times100}\)
kết quả cuối cùng là 198/100
\(\frac{2}{1X2}+\frac{2}{2X3}+\frac{2}{3X4}+...+\frac{2}{98X99}+\frac{2}{99X100}\)
\(2X\left(\cdot\frac{1}{1X2}+\frac{1}{2X3}+...+\frac{1}{98X99}+\frac{1}{99X100}\right)\)
\(2X\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(2X\left(1-\frac{1}{100}\right)\)
\(2X\frac{99}{100}\)
\(\frac{99}{50}\)
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{98.99}+\frac{2}{99.100}\)
\(2.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(2.\left(1-\frac{1}{100}\right)\)
\(2.\frac{99}{100}\)\(=\frac{99}{50}\)
Tính \(\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+...+\frac{1}{98\times99\times100}\)
sud kênh Mik ủng hộ với tên kênh là M.ichibi
kênh làm về MINECRAFT
\(A=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{98\cdot99\cdot100}\)
\(A=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{98\cdot99\cdot100}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{98\cdot99}-\frac{1}{99\cdot100}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{99\cdot100}\right)\)
tự tính
\(A=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+....+\frac{1}{98\cdot99\cdot100}\)
\(2A=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+....+\frac{1}{99\cdot99}-\frac{1}{99\cdot100}\)
\(2A=\frac{1}{1\cdot2}-\frac{1}{99\cdot100}=\frac{4949}{9900}\Rightarrow A=\frac{4949}{19800}\)
tính nhanh: \(\frac{1\times3\times2\times4\times3\times5\times4\times6\times5\times7}{2\times2\times3\times3\times4\times4\times5\times5\times6\times6}\)
Tính nhanh : \(\frac{2}{1\times2}+\frac{2}{2\times3}+\frac{2}{3\times4}+...+\frac{2}{9\times10}\)
\(\frac{2}{1\times2}+\frac{2}{2\times3}+\frac{2}{3\times4}+...+\frac{2}{9\times10}\)
=\(2\times\frac{1}{1\times2}+2\times\frac{1}{2\times3}+2\times\frac{1}{3\times4}+...+2\times\frac{1}{9\times10}\)
=\(2\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{9\times10}\right)\)
=\(2\times\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)
=\(2\times\left(\frac{1}{1}-\frac{1}{10}\right)=2\times\left(\frac{10}{10}-\frac{1}{10}\right)=2\times\frac{9}{10}\)
=\(\frac{9}{5}\)
=2-1+1-\(\frac{2}{3}\)+\(\frac{2}{3}\)-\(\frac{1}{2}\)+...+\(\frac{2}{9}\)-\(\frac{1}{5}\)
=2-\(\frac{1}{5}\)
=\(\frac{10}{5}\)-\(\frac{1}{5}\)
=\(\frac{9}{5}\).
**** mình nha mấy bạn.
\(\frac{2}{1\times2}+\frac{2}{2\times3}+\frac{2}{3\times4}+...+\frac{2}{18\times19}+\frac{2}{19\times20}\)
Tính nhanh
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+.......+\frac{2}{18.19}+\frac{2}{19.20}.\)
\(=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+........+\frac{1}{18.19}+\frac{1}{19.20}\right)\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\right)\)
\(=2\left(1-\frac{1}{20}\right)=\frac{2.19}{20}=\frac{19}{10}\)
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{18.19}+\frac{2}{19.20}\)
\(=1+\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+\frac{1}{4}-\frac{1}{4}+...-\frac{1}{19}+\frac{1}{20}\)
\(=1+\frac{1}{20}\)
\(=\frac{1}{20}\)
\(\frac{2}{1\times2}+\frac{2}{2\times3}+\frac{2}{3\times4}+......+\frac{1}{19\times20}\)
\(=2\left(\frac{1}{1\times2}+\frac{1}{2\times3}+..........+\frac{1}{19\times20}\right)\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-......+\frac{1}{19}-\frac{1}{20}\right)\)
\(=2\left(1-\frac{1}{20}\right)\)
\(=2.\frac{19}{20}=\frac{19}{10}\)