so sánh: \(\frac{1995}{1997}\)và \(\frac{1999}{2001}\)
nhanh lên thì mình tick
So sánh : 1995/1997 và 1999/2001
Ta có:
1-1995/1997=1997/1997-1995/1997=1/1997
1-1999/2001=2001/2001-1999/2001=1/2001
Vì 1/1995 > 1/2001 nên 1999/2001<1995/1997
hãy t cho mk nha mn mk biết ơn mn nhìu lắm
so sánh :
1995/1997 và 1999/2001
Ta có:
\(1-\frac{1995}{1997}=\frac{2}{1997}>1-\frac{1999}{2001}=\frac{2}{2001}\)
Vậy nên:
\(\frac{1995}{1997}<\frac{1999}{2001}\)
Ta có:
1-1995/1997=2/1997>1-1999/2001
=>1995/1997<1999/2001
k cho mình nha
hi hi câu hỏi này mình có đáp án la 1995/1997<1999/2001
so sánh bằng cánh nhanh nhất
43/171 và 45/169
3/11 và 1999/2001
1997/2001 và 2001/2005
giải rõ
ai giải nhanh và đúng mình tick cho
43/171 > 45/169
3/11 > 1999/2001
1997/2001 > 2001/2005
so sánh 1995/1997 và 1999/2001
cả bài giải nha
so sánh 1995/1997 1999/2001
Ta có: 1 - 1995/1997 = 2/1997
1 - 1999/2001 = 2/2001
mà 2/1997 > 2/2001 nên 1995/1997 < 1999/2001
Ta có: 1 - 1995 / 1997 = 2/1997
1- 1999/2001= 2/2001
VÌ 2/1997 > 2/2001 Nên 1995/1997 < 1999/2001
Giải phương trình
\(\frac{x+1}{2003}+\frac{x+3}{2001}+\frac{x+5}{1999}=\frac{x+7}{1997}+\frac{x+9}{1995}+\frac{x+11}{1993}\)
\(\frac{x+1}{2003}+\frac{x+3}{2001}+\frac{x+5}{1999}=\frac{x+7}{1997}+\frac{x+9}{1995}+\frac{x+11}{1993}\)
\(\Leftrightarrow\frac{x+1}{2003}+1+\frac{x+3}{2001}+1+\frac{x+5}{1999}+1=\frac{x+7}{1997}+1+\frac{x+9}{1995}+1+\frac{x+11}{1993}+1\)
\(\Leftrightarrow\frac{x+2004}{2003}+\frac{x+2004}{2001}+\frac{x+2004}{1999}=\frac{x+2004}{1997}+\frac{x+2004}{1995}+\frac{x+2004}{1993}\)
\(\Leftrightarrow\frac{x+2004}{2003}+\frac{x+2004}{2001}+\frac{x+2004}{1999}-\frac{x+2004}{1997}-\frac{x+2004}{1995}-\frac{x+2004}{1993}=0\)
\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2003}+\frac{1}{2001}+\frac{1}{1999}+\frac{1}{1997}+\frac{1}{1995}+\frac{1}{1993}\right)=0\)
\(\Leftrightarrow x+2004=0\) ( do \(\frac{1}{2003}+\frac{1}{2001}+\frac{1}{1999}+\frac{1}{1997}+\frac{1}{1995}+\frac{1}{1993}\ne0\))
\(\Leftrightarrow x=-2004\)
\(\frac{x+1}{2003}\)\(+\)\(\frac{x+3}{2001}\)\(+\)\(\frac{x+5}{1999}\)= \(\frac{x+7}{1997}\)\(+\frac{x+9}{1995}\)\(+\frac{x+11}{1993}\)
\(\Leftrightarrow\)\(\frac{x+1}{2003}\)\(+1+\)\(\frac{x+3}{2001}\)\(+1+\frac{x+5}{1999}\)= \(\frac{x+7}{1997}\)\(+1+\frac{x+9}{1995}\)\(+1+\frac{x+11}{1993}\)
\(\Leftrightarrow\frac{x+2004}{2003}\)\(+\frac{x+2004}{2001}\)\(+\frac{x+2004}{1999}\)\(-\frac{x+2004}{1997}\)\(-\frac{x+2004}{1995}\)\(-\frac{x+2004}{1993}\)\(=0\)
\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2003}+\frac{1}{2001}+\frac{1}{1999}-\frac{1}{1997}-\frac{1}{1995}-\frac{1}{1993}\right)=0\)
\(\Leftrightarrow x+2004=0\)(vì tích kia có kết quả khác 0)
\(\Leftrightarrow x=-2004\)
Vậy PT có tập nghiệm S = {-2004}
\(\frac{x+1}{2003}+1+\frac{x+3}{2001}+1+\frac{x+5}{1999}+1=\frac{x+7}{1997}+1+\frac{x+9}{1995}+1+\frac{x+11}{1993}+1\)
<=>\(\frac{x+2004}{2003}+\frac{x+2004}{2001}+\frac{x+2004}{1999}=\frac{x+2004}{1997}+\frac{x+2004}{1995}+\frac{x+2004}{1993}\)
<=>\(\left(x+2004\right)\left(\frac{1}{2003}+\frac{1}{2001}+\frac{1}{1999}-\frac{1}{1997}-\frac{1}{1995}-\frac{1}{1993}\right)=0\)
Mà \(\left(\frac{1}{2003}+\frac{1}{2001}+\frac{1}{1999}-\frac{1}{1997}-\frac{1}{1995}-\frac{1}{1993}\right)< 0\)
=> X+2004=0
=>X=-2004
Giải phương trình sau:
\(\frac{x+2001}{5}+\frac{x+1999}{7}+\frac{x+1997}{9}+\frac{x+1995}{11}=-4.\)-4
cái cuối là =-4 nhé!
\(\frac{x+2001}{5}+\frac{x+1999}{7}+\frac{x+1997}{9}+\frac{x+1995}{11}=-4\)
\(\Rightarrow\frac{x+2001}{5}+1+\frac{x+1999}{7}+1+\frac{x+1997}{9}+1+\frac{x+1995}{11}+1=0\)
\(\Rightarrow\frac{x+2006}{5}+\frac{x+2006}{7}+\frac{x+2006}{9}+\frac{x+2006}{11}=0\)
\(\Rightarrow\left(x+2006\right)\left(\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+\frac{1}{11}\right)=0\)
\(\Rightarrow x+2006=0\)vì \(\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+\frac{1}{11}>0\)
\(\Rightarrow x=-2006\)
Giải phương trình
\(\frac{x+1}{2003}+\frac{x+3}{2001}+\frac{x+5}{1999}-\frac{x+7}{1997}-\frac{x+9}{1995}-\frac{x+11}{1993}=0\)
So sánh
\(\frac{1997}{1996}\) và \(\frac{1998}{1999}\)
ai tick mik mik tick lại
\(\frac{1997}{1996}>1;\frac{1998}{1999}< 1\Rightarrow\frac{1997}{1996}>\frac{1998}{1999}\)
Ta thấy : \(\frac{1997}{1996}>1;\frac{1998}{1999}< 1\)
\(\rightarrow\frac{1997}{1996}>\frac{1998}{1999}\)
~ ai tk mk mk tk lại cho nha ~
Ta có:
\(\frac{1997}{1996}>\frac{1996}{1996}=1.\)
Mà \(\frac{1998}{1999}< \frac{1999}{1999}=1.\)
=>\(\frac{1997}{1996}< \frac{1998}{1999}.\)
Vậy.......