Tìm y biết: \(\frac{y}{3}\times2-\frac{y}{3}\times\frac{1}{3}-\frac{y}{3}\times\frac{2}{3}=3\)
Tìm các số x,y,z biết rằng \(\frac{x}{3}=\frac{y}{6}=\frac{z}{8}\) và \(3\times x-2\times y-z\)=20
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{3}=\frac{y}{6}=\frac{z}{8}=\frac{3x}{9}=\frac{2y}{12}=\frac{3x-2y-z}{9-12-8}=\frac{20}{-11}\)
=>x=60/-11; y=120/-11; z=160/-11
Áp dụng tính chất dãy tỉ số bằng nhau, ta có
\(\frac{x}{3}=\frac{y}{6}=\frac{z}{8}=\frac{3x-2y-z}{3\times3-2\times6-8}=\frac{20}{-11}\)
Do đó: \(x=\frac{-60}{11}\), \(y=\frac{-120}{11}\),\(z=\frac{-160}{11}\)
Tìm x , y thỏa mãn :
a) \(\frac{1}{2}\times(\frac{3}{4}x-\frac{1}{2})^{2018}+\frac{2017}{2018}\times/\frac{4}{5}y+\frac{6}{25}/\le0\)0
b) \(2017\times/2x-y/+2018\times(y-4)^{2017}\le0\)
Tìm giá trị của y biết
\(\left(\frac{3}{2}\right)^{10}=\left(\frac{3}{2}\right)^6\times\left(-\frac{3}{2}\right)^y\)
\(\Rightarrow\left(-\frac{3}{2}\right)^y=\left(\frac{3}{2}\right)^{10}:\left(\frac{3}{2}\right)^6\Rightarrow\left(-\frac{3}{2}\right)^y=\left(\frac{3}{2}\right)^4=\left(-\frac{3}{2}\right)^4\)
\(\Rightarrow y=4\)
\(\left(\frac{3}{2}\right)^y=\left(\frac{3}{2}\right)^{10}:\left(\frac{3}{2}\right)^6\Rightarrow\left(\frac{3}{2}\right)^y=\left(\frac{3}{2}\right)^4\)
\(\Rightarrow\)y=4
Tìm X,Y biết \(\frac{x^3+y^3}{6}=\frac{x^3-2y^2}{4}vàx^6\times y^6=64\)
x6.y6=64 (x,y khác 0)
<=> (x.y)6=26 (64=26)
=> x.y=2 => x=2/y
Lại có: \(\frac{x^3+y^3}{6}=\frac{x^3-2y^2}{4}\) <=> \(\frac{x^3+y^3}{3}=\frac{x^3-2y^2}{2}\)
<=> 2x3+2y3=3x3-6y2
<=> 2y3=x3-6y2 . Thay x=y/2 vào ta được:
\(2y^3=\frac{y^3}{8}-6y^2\) <=> 16y3=y3-48y2
<=> 15y3+48y2 =0
<=> y2(15y+48)=0
Do y khác 0 => 15y+48=0 => \(y=-\frac{48}{15}=-\frac{16}{5}\)
x=y/2 => \(x=-\frac{8}{5}\)
Đáp số: \(x=-\frac{8}{5}\); \(y=-\frac{16}{5}\)
\(\left(\frac{1}{1\times3}+\frac{1}{3\times5}+\frac{1}{5\times7}+\frac{1}{7\times9}+\frac{1}{9\times11}\right)\times y=\frac{2}{3}\)
Tìm y
\(\frac{1}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+\frac{2}{9\times11}\right)\times y=\frac{2}{3}\)
\(\frac{1}{2}\times\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\times y=\frac{2}{3}\)
\(\frac{1}{2}\times\left(\frac{1}{1}-\frac{1}{11}\right)\times y=\frac{2}{3}\)
\(\frac{1}{2}\times\frac{10}{11}\times y=\frac{2}{3}\)
\(\frac{5}{11}\times y=\frac{2}{3}\) => \(y=\frac{2}{3}:\frac{5}{11}=\frac{2}{3}\times\frac{11}{5}=\frac{22}{15}\)
Tìm y,biết:
a,\(y-\frac{1}{3}=\frac{10}{21}\div\frac{15}{28}\)
b,\(\frac{2}{7}\div y=\frac{10}{21}\times\frac{9}{14}\)
\(\frac{2}{7}:y=\frac{10}{21}.\frac{9}{14}\)
\(\frac{2}{7}:y=\frac{15}{49}\)
\(y=\frac{2}{7}:\frac{15}{49}\)
\(y=\frac{2}{7}.\frac{49}{15}\)
\(y=\frac{14}{15}\)
\(y-\frac{1}{3}=\frac{10}{21}:\frac{15}{28}\)
\(y-\frac{1}{3}=\frac{10}{21}.\frac{28}{15}\)
\(y-\frac{1}{3}=\frac{8}{9}\)
\(y=\frac{8}{9}+\frac{1}{3}\)
\(y=\frac{8}{9}+\frac{3}{9}\)
\(y=\frac{11}{9}\)
a) Ta có : \(y-\frac{1}{3}=\frac{10}{21}\div\frac{15}{28}\)
\(\Rightarrow\) \(y-\frac{1}{3}=\frac{8}{9}\)
\(\Rightarrow\) \(y\) \(=\frac{8}{9}+\frac{1}{3}\)
\(\Rightarrow\) \(y\) \(=\frac{11}{9}\)
Vậy \(y=\frac{11}{9}\)
b) Ta có : \(\frac{2}{7}\div y=\frac{10}{21}\times\frac{9}{14}\)
\(\Rightarrow\) \(\frac{2}{7}\div y=\frac{15}{49}\)
\(\Rightarrow\) \(y=\frac{2}{7}\div\frac{15}{49}\)
\(\Rightarrow\) \(y=\frac{14}{15}\)
Vậy \(y=\frac{14}{15}\)
Cbht !!!
Bài 3:
B= \(\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)\times\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right]\div\frac{\sqrt{x}^3+y\sqrt{x}+x\sqrt{y}+\sqrt{y}^3}{\sqrt{x^3y}+\sqrt{xy^3}}\)
a)Tìm ĐKXĐ
b)Rút gọn
c)Tìm x,y để B min
Tính:
\(A=\frac{1^2}{1\times2}\times\frac{2^2}{2\times3}\times\frac{3^2}{3\times4}\times...\times\frac{99^2}{99\times100}\times\frac{100^2}{100\times101}\)
Ta có:
\(A=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{99^2}{99.100}.\frac{100^2}{100.101}\)
\(=\frac{1}{2}.\frac{4}{6}.\frac{9}{12}....\frac{9801}{9900}.\frac{10000}{10100}\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{99}{100}.\frac{100}{101}=\frac{1.2.3...99.100}{2.3.4...100.101}=\frac{1}{101}\)(Tối giản)
1. Tìm số tự nhiên n, thỏa mãn : \(\frac{95}{13}\times\frac{105}{31}>n>\frac{100}{31}:\frac{50}{217}.\)
2. Tìm y:
\(y+y:\frac{2}{7}+y\times\frac{3}{5}=102\)
1. n = 15;16;17;18;19;20;21;22;23;24
2. y = 20
Bạn tự đăng câu hỏi thì bạn phải tự trả lời chứ.
k nha !