tim x, y, z biet:
(x-y^2+z)^2+(y-2)^2+(z+3)^2=0
tim x;y;z biet x(x+y+z)=2; y(x+y+z)=25; z(x+y+z)=-2; x>0
Vậy x(x + y + z) + y(x + y+ z) + z(x + y + z) = 2 + 25 - 2 = 25
(x + y + z)(x + y + z) = 25
(x + y + z) = 52 = (-5) 2
Bạn tự liệt kê x;y;z ra nha!
Ta có : x (x + y + z) = 2 (1)
y (x + y + z) = 25 (2)
z (x + y + z) = -2 (3)
=> x (x + y + z) + y (x + y + z) + z (x + y + z) = 2 + 25 + (-2)
=> (x + y + z) (x + y + z) = 25
=> (x + y + z)2 = 52 = (-5)2
* Nếu (x + y + z)2 = 52 => x + y + z = 5 (4)
Từ (1) và (4) => x . 5 = 2 => x = 2/5 (thỏa mãn x > 0)
Từ (2) và (4) => y . 5 = 25 => y = 5
Từ (30 và (4) => z . 5 = -2 => z = -2/5
* Nếu (x + y + z)2 = (-5)2 => x + y + z = -5 (5)
Từ (1) và (5) => x . (-5) = 2 => x = -2/5 (ko thỏa mãn x > 0)
Vậy x = 2/5 ; y = 5 ; z = -2/5 thì thỏa mãn đề bài
tim x,y,z biet y+z+1=x+z+2/y=x+y-3/2=1/x+y+z
Tim x, y, z biet
a ) |x-3,5|+ |x+5|=0
b) |x-1| + (y+1)^2 + |z-1|=0
c) ( x-1/3)^2 + (y-2)^2+ (z-1)^2 be hon hoac bang 0
d)(x-z)^2+ (y+x)^2 + (z+1/4)^2 =0
Cac ban giup minh voi minh can gap lam
a. vô nghiệm vì tổng hai số dương chỉ bằng ko khi chúng đồng thời bằng 0
b. tổng 3 số dưng =0 khi dồng thời cả 3 bằng 0
vậy x=1; y=-1; z=1
c.tổng 3 số dưng luông lớn hơn bằng ko
vậy x=1/3; y=2; z=1
d tương tự
x-z=0
x+y=0
z+1/4=0
.............
z=-1/4
x=-1/4
y=1/4
tim x;y;z biet x+y+z =1+2+3
vàx/1=y/2=z/3
\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)và z + y + x = 1 + 2 + 3 = 6
Theo đề ra ta có : \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=\frac{x+y+z}{1+2+3}=\frac{6}{6}=1\)( áp dụng tính chất dãy tỉ số bằng nhau )
Nếu \(\frac{x}{1}=1\Rightarrow x=1.1=1\)
\(\frac{y}{2}=1\Rightarrow y=2.1=2\)
\(\frac{z}{3}=1\Rightarrow x=3.1=3\)
Áp dụng ...
=> x/1 = y/2 = z/3 = x+y+z/ 1+2+3 = 1+2+3/1+2+3 = 1
=> x/1 = 1 -> x =1
y/2 = 1 -> y=2
z/3 = 1=> z=3
Vậy x= 1, y=2, z=3
tim x y z biet x-1/2=y-2/3=z-3/4 biet x-2y+3z=14
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{x-1-2\left(y-2\right)+3\left(z-3\right)}{2-2.3+3.4}=\frac{x-2y+3z-6}{8}=1\)
\(\Leftrightarrow\hept{\begin{cases}x-1=2\\y-2=3\\z-3=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=5\\z=7\end{cases}}\)
tim x,y,z biet :
x^3/8=y^3/64=z^3/216 va x^2+y^2+z^2=14
Tim cac sox y z biet x-1/2=y-2/3=z-3/4 va x-2*y+3*z=14
Tim x , y , z biet: x /y+z+1 = y/ z+x+2 = z/ x+y−3 =x+y+z Cach lam ho minh voi
tim x,y,z thuoc Z biet /2x-4/+/y+2/+/2x+3y-z/=0