tìm 7 số nguyên tố
sao cho tổng bình phương 6 số bằng bình phương số còn lại
Tìm 8 số nguyên tố
sao cho tổng bình phương của 7 số bằng bình phương của số còn lại
tìm 9 số nguyên tố sao cho tổng bình phương 8 số bằng bình phương số còn lại
ghê bài này mà lớp 9 cơ mk nghĩ lớp 6 thôi
Lớp 6 không làm nổi --> nâng cấp lớp 9 làm nổi không
Không mất tính tổng quát có thể giả sử 9 số có thứ tự như sau a1 ≤ a2 ≤ · · · ≤ a9.
Từ giả thiết rằng mỗi số an (\(1\le n\le9;n\in N\)) đều có thể viết dưới dạng tổng bình phương của 8 số còn lại nên ta có thể chọn n = 1 và n = 9
=> a1 = a22 + a32+ · · · a92 và a9 = a12 + a22+ · · · + a82 => 9 số đều không âm.
a1 ≤ a9 => a22 + a32 + · · · + a92 ≤ a12 + a22 + · · · + a82 => a92 ≤ a12 => a9 ≤ a1 vì các số đều không âm
=> 9 số bằng nhau => an = 8an2 => an = 0 hoặc an = 1/8
Vậy 9 số đó đều bằng 0 hoặc 1/8
P/S : Bạn hỏi số nguyên tố thì câu trả lời là "Không có"
Tìm 11 số nguyên sao cho mỗi số bằng bình phương của tổng 10 số còn lại
Một ma phương cấp 4 chứa các số tự nhiên từ 1 đến 16 có các tính chất sau: 1 Tổng các số trên cùng hàng, cùng cột, cùng đường chéo đều bằng nhau và bằng 34 . Tổng 4 số ở 4 góc bằng 34 . Tổng bình phương các số của hai hàng phía trên bằng tổng bình phương các số của hai hàng phía dưới . Tổng bình phương các số của hai hàng 1 và 3 bằng tổng bình phương các số của hai hàng 2 và 4 . Tổng các số trên hai đường chéo bằng tổng các số còn lại . Tổng bình phương các số trên hai đường chéo bằng tổng bình phương các số còn lại 7 Tổng lập phương các số trên hai đường chéo bằng tổng lập phương các số còn lại Tìm ma phương cấp 4 này
tìm 5 số nguyên sao cho mỗi số trong các số đó bằng tổng bình phương của 4 số còn lại
Tìm năm số nguyên sao cho mỗi số trong các số đó đều bằng bình phương của tổng bốn số còn lại
Tìm 5 số nguyên sao cho mỗi số trong các số đó đều bằng bình phương của tổng 4 số còn lại.
a^2 + b^2 + c^2 + d^2 = e^2
a^2 + b^2 + c^2 + e^2 = d^2
a^2 + b^2 + d^2 + e^2 = c^2
a^2 + d^2 + e^2 + c^2 = b^2
d^2 + e^2 + c^2 + b^2 = a^2
=> 4( a^2 + b^2 + c^2 + d^2 + e^2 ) = a^2 + b^2 + c^2 + d^2 + e^2
=> 3( a^2 + b^2 + c^2 + d^2 + e^2 ) = 0
=> a^2 + b^2 + c^2 + d^2 + e^2 = 0
=> a = b = c = d = e = 0
a^2 + b^2 + c^2 + d^2 = e^2
a^2 + b^2 + c^2 + e^2 = d^2
a^2 + b^2 + d^2 + e^2 = c^2
a^2 + d^2 + e^2 + c^2 = b^2
d^2 + e^2 + c^2 + b^2 = a^2
=> 4( a^2 + b^2 + c^2 + d^2 + e^2 ) = a^2 + b^2 + c^2 + d^2 + e^2
=> 3( a^2 + b^2 + c^2 + d^2 + e^2 ) = 0
=> a^2 + b^2 + c^2 + d^2 + e^2 = 0
=> a = b = c = d = e = 0
a^2 + b^2 + c^2 + d^2 = e^2
a^2 + b^2 + c^2 + e^2 = d^2
a^2 + b^2 + d^2 + e^2 = c^2
a^2 + d^2 + e^2 + c^2 = b^2
d^2 + e^2 + c^2 + b^2 = a^2
=> 4( a^2 + b^2 + c^2 + d^2 + e^2 ) = a^2 + b^2 + c^2 + d^2 + e^2
=> 3( a^2 + b^2 + c^2 + d^2 + e^2 ) = 0
=> a^2 + b^2 + c^2 + d^2 + e^2 = 0
=> a = b = c = d = e = 0
tìm 9 số nguyên sao cho mỗi số trong các số đó đều bằng bình phương của tổng 8 số còn lại
tìm 5 số nguyên sao cho mỗi số trong các số đó đều bằng bình phương của tổng 4 số còn lại