Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen Hai Dang
Xem chi tiết
kẻ bí mật
Xem chi tiết
Đoàn Đức Hà
28 tháng 9 2021 lúc 10:46

\(2\left(x+y\right)=5\left(y+z\right)=3\left(z+x\right)\)

\(\Leftrightarrow\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

\(\frac{z+x}{10}=\frac{y+z}{6}=\frac{\left(z+x\right)-\left(y+z\right)}{10-6}=\frac{x-y}{4}\)

\(\frac{x+y}{15}=\frac{z+x}{10}=\frac{\left(x+y\right)-\left(z+x\right)}{15-10}=\frac{y-z}{5}\)

Suy ra đpcm. 

Khách vãng lai đã xóa
doducminh
Xem chi tiết
Cậu bé ngu ngơ
Xem chi tiết
Ngô Văn Nam
Xem chi tiết
Nguyễn Ngọc Vy
11 tháng 6 2017 lúc 13:38

\(\frac{\left(ax+by+cz\right)^2}{x^2+y^2+z^2}=a^2+b^2+c^2\)

\(\Rightarrow\left(ax+by+cz\right)^2=\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\)

\(\Rightarrow a^2x^2+b^2y^2+c^2z^2+2abxy+2acxz+2bcyz\)\(=a^2x^2+b^2x^2+c^2x^2+a^2y^2+b^2y^2+c^2y^2+a^2z^2+b^2z^2+c^2z^2\)

\(\Rightarrow b^2x^2-2abxy+a^2y^2+b^2z^2-2bcyz+c^2y^2+a^2z^2-2acxz+c^2x^2=0\)

\(\Rightarrow\left(bx-ay\right)^2+\left(bz-cy\right)^2+\left(az-cx\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}bx-ay=0\\bz-cy=0\\az-cx=0\end{cases}\Rightarrow\hept{\begin{cases}bx=ay\\bz=cy\\az=cx\end{cases}\Rightarrow}\hept{\begin{cases}\frac{b}{y}=\frac{a}{x}\\\frac{b}{y}=\frac{c}{z}\\\frac{a}{x}=\frac{c}{z}\end{cases}\Rightarrow}\frac{a}{x}=\frac{b}{y}=\frac{c}{z}}\)

Ngô Văn Nam
Xem chi tiết
Đặng Thanh Thủy
11 tháng 6 2017 lúc 14:25

\(\frac{\left(ax+by+cz\right)^2}{x^2+y^2+z^2}=a^2+b^2+c^2\Leftrightarrow\left(ax+by+cz\right)^2=\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow a^2x^2+b^2y^2+c^2z^2+2\left(abxy+bcyz+cazx\right)=a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)\(\Leftrightarrow a^2y^2-2ay\cdot bx+b^2x^2+b^2z^2-2bz\cdot cy+c^2y^2+a^2z^2-2az\cdot cx+c^2x^2=0\)

\(\Leftrightarrow\left(ay-bx\right)^2+\left(bz-cy\right)^2+\left(az-cx\right)^2=0\)

mà \(\left(ay-bx\right)^2;\left(bz-cy\right)^2;\left(az-cx\right)^2\ge0\)nên \(\left(ay-bx\right)^2=\left(bz-cy\right)^2=\left(az-cx\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}ay=bx\\bz=cy\\az=cx\end{cases}\Leftrightarrow\frac{a}{x}}=\frac{b}{y}=\frac{c}{z}\left(x,y,z\ne0\right)\)(ĐPCM)

Bạn ko hiểu chỗ nào cứ hỏi lại mình nhé

linh na
Xem chi tiết
danh anh
Xem chi tiết
HOANG THI QUE ANH
Xem chi tiết