Tìm n\(\varepsilon\)N : \(\frac{1}{3}.2^{n-1}+2^2=\frac{7}{3}.64\)
Tìm n \(\varepsilon\)N :\(\frac{1}{3}.2^{n-1}+2^n=\frac{7}{3}.64\)
\(\frac{1}{3}.2^{n-1}+2^n=\frac{7}{3}.64\)
\(\frac{1}{3}.2^n:2^1+2^n=\frac{7}{3}.64\)
\(2^n.\frac{1}{3}.\frac{1}{2}+2^n=\frac{7}{3}.64\)
\(2^n.\frac{1}{6}+2^n.1=\frac{7}{3}.64\)
\(2^n.\left(\frac{1}{6}+1\right)=\frac{7}{3}.64\)
\(2^n.\left(\frac{1}{6}+\frac{6}{6}\right)=\frac{7}{3}.64\)
\(2^n.\frac{7}{6}=\frac{7}{3}.64\)
\(2^n=\frac{7}{3}.64:\frac{7}{6}\)
\(2^n=\frac{7}{3}.\frac{6}{7}.64\)
\(2^n=2.64\)
\(2^n=128\)
\(2^n=2^7\Rightarrow n=7\)
Chứng minh rằng :
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}<\frac{2}{3}\)với mọi \(n\varepsilon N,\) \(n\le4\)
Tìm n biết \(n\varepsilon N\)
\(\frac{3}{n-1}
Tìm n\(\varepsilon\)N* biết
\(\frac{1}{9}\).\(^{27^n}\)=\(^{3^n}\)
\(\frac{1}{2}\).\(2^n\)+ 4 . \(2^n\)= 9 . \(5^n\)
D=\(\frac{11.3^{22}.3^7-9^{15}}{\left(2.3^{14}\right)^2}\)
Đề sai thì phải ! Học Lớp 7 mới giải xong bài này !
\(\frac{1}{9}\cdot27^n=3^n\)
\(\frac{1}{9}\cdot\left(3^3\right)^n=3^n\)
\(\frac{1}{9}\cdot3^{3n}=3^n\)
\(\frac{1}{9}=3^n\text{ : }3^{3n}\)
\(\frac{1}{9}=3^{-2n}\)
\(\frac{1}{3^2}=\frac{1}{3^{2n}}\)
\(\Rightarrow\text{ }3^{2n}=3^2\)
\(3^{2n}-3^2=0\)
\(3\left(3^{2n-1}-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3=0\text{ ( Vô lí ) }\\3^{2n-1}-3=0\end{cases}}\) \(\Rightarrow\text{ }3^{2n-1}=3\) \(\Rightarrow\text{ }2n-1=1\) \(\Rightarrow\text{ }2n=2\) \(\Rightarrow\text{ }n=1\)
Vậy \(n=1\)
\(\frac{1}{9}\cdot27^n=3^n\)
\(\frac{1}{3^2}\cdot\left(3^3\right)^n=3^n\)
\(\frac{3^{3n}}{3^2}=3^n\)
\(3^{3n}=3^2\cdot3^n\)
\(3^{3n}=3^{n+2}\)
\(\Rightarrow\text{ }3n=n+2\)
\(3n-n=2\)
\(2n=2\)
\(n=2\text{ : }2\)
\(n=1\)
\(\frac{1}{9}\cdot27^n=3^n\)
\(\frac{1}{3^2}\cdot\left(3^3\right)^n=3^n\)
\(\frac{3^{3n}}{3^2}=3^n\)
\(3^{3n}=3^2\cdot3^n\)
\(3^{3n}=3^{n+2}\)
\(\Rightarrow\text{ }3n=n+2\)
\(3n-n=2\)
\(2n=2\)
\(n=2\text{ : }2\)
\(n=1\)
Tính \(D=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{n^2}\right)\)
\(n\varepsilon N,n\ge2\)
\(\frac{1}{2^2}\)+ \(\frac{1}{3^2}\)+ \(\frac{1}{4^2}\)+......+\(\frac{1}{n^2}\)< 1 (n\(\varepsilon\)N , n>=2)
Các bạn giúp mình với mình đang cần gấp
Bài 4:Tìm n\(\varepsilon\)N biết:
a.\(\frac{-1}{2}\le n< 2\)
b.\(3\le n\le\frac{25}{4}\)
c.\(\frac{-1}{5}< n\le\frac{-1}{2}\)
\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{n+1}\right)\)
n \(\varepsilon\) N