29.(x-5)=0
tìm x biết
Tìm x, y bt: x>0, y>0 và x/y=2/5; x^2+y^2=29
3^2.2^x-5^31:5^29=3^2-2017^0
Tính
4 x 4 + 29 =………………… 20 : 4 x 3 =…………………
3 : 3 x 0 = ………………. 25 : 5 x 1 =……………………
4 x 4 + 29 = 16 + 29 20 : 4 x 3 = 5 x 3
= 45 = 15
3 : 3 x 0 = 1 x 0 25 : 5 x 1 = 5 x 1
= 0 = 5
1,(x-3).(x-5)<0
2,2x2-3=29
1) (x-3)(x-5)<0
=> x-3 và x-5 trái dấu nhau
Thấy x-5<x-3 \(\Rightarrow\hept{\begin{cases}x-5< 0\\x-3>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 5\\x>3\end{cases}\Leftrightarrow}3< x< 5}\)
2) 2x2-3=29
<=> 2x2=32
<=> x2=16
<=> x={-4;4}
5)tim x nguyen
a)5x + 15=29-2x
b)36-l2x+5l = 13
c)(x-2)(2x-6)=0
d)(x-5)(x+2)<0
e)(3-x)(x-1)>0
h)(x^2-3)(x^2-5)<0
Tìm x biết:a) 29-x/21 + 27-x/23 + 25-x/25 + 23-x/27 + 21-x/29
b)x-10/30 + x-14/43 + x-5/95 + x-148/8 = 0
a, bổ sung đề
\(\dfrac{29-x}{21}+1+\dfrac{27-x}{23}+1+\dfrac{25-x}{25}+1+\dfrac{23-x}{27}+1+\dfrac{21-x}{29}+1=0\)
\(\Leftrightarrow\dfrac{50-x}{21}+\dfrac{50-x}{23}+\dfrac{50-x}{25}+\dfrac{50-x}{27}+\dfrac{50-x}{29}=0\)
\(\Leftrightarrow\left(50-x\right)\left(\dfrac{1}{21}+\dfrac{1}{23}+\dfrac{1}{25}+\dfrac{1}{27}+\dfrac{1}{29}\ne0\right)=0\Leftrightarrow x=50\)
Tìm x biết:
-12(x- 5)+ 7(3 -x) = 5
(x-2) . (x+4) = 0
2x2 - 3 = 29
(x-2).(x+14)=0
(x-2).(x+4)=0
(7-x).(x+19)=0
(x-3)(x-5)<0
2x^2-3=29
-6x-(-7)=25
46-(x-11)=-48
\(1.\left(x-2\right).\left(x+14\right)=0\)
<=>\(\orbr{\begin{cases}x-2=0\\x+14=0\end{cases}}\)
<=>\(\orbr{\begin{cases}x=2\\x=-14\end{cases}}\)
\(2.\left(x-2\right).\left(x+4\right)=0\)
<=>\(\orbr{\begin{cases}x-2=0\\x+4=0\end{cases}}\)
<=>\(\orbr{\begin{cases}x=2\\x=-4\end{cases}}\)
\(\left(x-2\right)\left(x+14\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+14=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-14\end{cases}}}\)
vậy x= 2 hoặc x=-14
\(\left(x-2\right)\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-4\end{cases}}}\)
vậy x=2 hoặc x=-4
\(\left(x-3\right)\left(x-5\right)< 0\)
nên x-3 và x-5 khác dấu
\(th1\Leftrightarrow\orbr{\begin{cases}x-3< 0\\x-5>0\end{cases}\Leftrightarrow\orbr{\begin{cases}x< 3\\x>5\end{cases}}\Leftrightarrow5< x< 3}\left(vl\right)\)
\(th2\Leftrightarrow\orbr{\begin{cases}x-3>0\\x-5< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x>3\\x< 5\end{cases}}\Leftrightarrow3< x< 5}\left(tm\right)\)
vậy với 3<x<5
thì x=4