tim m,n thuoc Z biet
\(\frac{m}{2}-\frac{2}{n}=\frac{1}{2}\)
1 tim x,y,z biet
\(\frac{-4}{x}=\frac{y}{-14}=\frac{12}{21}=\frac{z}{-63}\)
2 tim n thuoc z n khac 0
a \(\frac{1111100:n}{23331:n}+\frac{-10}{-21}\)
b \(\frac{1075:n}{600:n}=\frac{43}{24}\)
cho M=(1+\(\frac{a}{a^2+1}\)) : (\(\frac{1}{a-1}\)- \(\frac{2a}{a^3-a^2+a-1}\))
tim a thuoc z de m thuoc z
tim a de m=7.tim a de m>0
ĐKXĐ bạn tự xét nhé
\(M=\left(1+\frac{a}{a^2+1}\right):\left(\frac{1}{a-1}-\frac{2a}{a^3-a^2+a-1}\right)\)
\(M=\left(\frac{a^2+1}{a^2+1}+\frac{a}{a^2+1}\right):\left(\frac{a^2+1}{\left(a^2+1\right)\left(a-1\right)}-\frac{2a}{a^2\left(a-1\right)+\left(a-1\right)}\right)\)
\(M=\left(\frac{a^2+a+1}{a^2+1}\right):\left(\frac{a^2+1}{\left(a^2+1\right)\left(a-1\right)}-\frac{2a}{\left(a^2+1\right)\left(a-1\right)}\right)\)
\(M=\left(\frac{a^2+a+1}{a^2+1}\right):\left(\frac{a^2-2a+1}{\left(a^2+1\right)\left(a-1\right)}\right)\)
\(M=\left(\frac{a^2+a+1}{a^2+1}\right):\left(\frac{\left(a-1\right)^2}{\left(a^2+1\right)\left(a-1\right)}\right)\)
\(M=\frac{\left(a^2+a+1\right)\left(a^2+1\right)\left(a-1\right)}{\left(a^2+1\right)\left(a-1\right)^2}\)
\(M=\frac{a^2+a+1}{a-1}\)
Để M thuộc Z thì \(a^2+a+1⋮a-1\)
\(\Leftrightarrow a^2-a+2a-2+3⋮a-1\)
\(\Leftrightarrow a\left(a-1\right)+2\left(a-1\right)+3⋮a-1\)
\(\Leftrightarrow\left(a-1\right)\left(a+2\right)+3⋮a-1\)
Mà \(\left(a-1\right)\left(a+2\right)⋮a-1\)
\(\Rightarrow3⋮a-1\)
\(\Rightarrow a-1\inƯ\left(3\right)=\left\{1;3;-1;-3\right\}\)
\(\Rightarrow a\in\left\{2;4;0;-2\right\}\)
Để M = 7 thì :
\(\frac{a^2+a+1}{a-1}=7\)
\(\Leftrightarrow a^2+a+1=7\left(a-1\right)\)
\(\Leftrightarrow a^2+a+1=7a-7\)
\(\Leftrightarrow a^2-6a+8=0\)
\(\Leftrightarrow a^2-2a-4a+8=0\)
\(\Leftrightarrow a\left(a-2\right)-4\left(a-2\right)=0\)
\(\Leftrightarrow\left(a-2\right)\left(a-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}a-2=0\\a-4=0\end{cases}\Rightarrow\orbr{\begin{cases}a=2\\a=4\end{cases}}}\)
Để M > 0 thì :
\(\frac{a^2+a+1}{a-1}>0\)
Vì \(a^2+a+1>0\forall a\), do đó để M > 0 thì : \(a-1>0\Leftrightarrow a>1\)
Chứng minh \(a^2+a+1>0\):
Đặt \(B=a^2+a+1\)
\(B=a^2+2\cdot a\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\)
\(B=\left(a+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(a+\frac{1}{2}\right)^2\ge0\forall a\)
\(\Rightarrow B\ge0+\frac{3}{4}=\frac{3}{4}>0\)
\(\Rightarrow B>0\left(đpcm\right)\)
Dấu "=" xảy ra \(\Leftrightarrow a+\frac{1}{2}=0\Leftrightarrow a=\frac{-1}{2}\)
Tim cac so nguyen m va n, biet: \(\frac{m}{2}-\frac{2}{n}=\frac{1}{2}\)
\(A=\frac{3n+2}{n-5}\) Biet n thuoc Z, khac 5. Tim n de A thuoc Z
Ai nhanh mik tick, giup mik nha!!!!
\(\)
Ta có: A = \(\frac{3n+2}{n-5}=\frac{3\left(n-5\right)+17}{n-5}=3+\frac{17}{n-5}\)
Để A thuộc Z thì 17 \(⋮\)n - 5 => n - 5 \(\in\)Ư(17) = {1; -1; 17; -17}
Lập bảng :
n - 5 | 1 | -1 | 17 | -17 |
n | 6 | 4 | 22 | -12 |
Vậy n thuộc {6;4;22;-12} thì A thuộc Z
A=(3n-15)+17/n-5
A=3+ 17/n-5
A thuoc Z thi 3 + 17/n-5 thuoc Z -->17/n-5 thuoc Z
-->n-5 thuoc Ư(17)
để A thuộc Z thì
3n+2 chia hết cho n-5
3(n-5)+17 chia hết cho n-5
vì 3(n-5) chia hết cho n-5 nên
17 chia hết cho n-5
n-5 thuộc ước của 17={1;-1;17;-17}
mk ko lập đc bảng nên mk xét trường hợp nha nhưng bn nên lập bảng thì sẽ dễ hơn
TH1: n-5=1 suy ra n=6( TM)
TH2: n-5=-1 suy ra n=4 (TM)
TH3 : n-5=17 suy ra n=22 (TM)
TH4: n-5=-17 suy ra n= -12 ( TM)
vậy n thuộc { -12;4;6;22}
mk nghĩ bn nên dùng kí hiệu nha
# HỌC TỐT#
kết bạn nha
Tim x thuoc Z, biet: \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right):2}=\frac{2009}{2011}\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x.\left(x+1\right):2}=\frac{2009}{2011}\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x.\left(x+1\right)}=\frac{2009}{4022}\)(nhân mỗi vế với 1/2)
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}=\frac{2009}{4022}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2009}{4022}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2009}{4022}\)\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2009}{4022}=\frac{1}{2011}\)
\(\Rightarrow x+1=2011\Rightarrow x=2010\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right):2}=\frac{2009}{2011}\)
\(\Rightarrow\frac{1}{2}\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right):2}\right)=\frac{2009}{4022}\)
\(\Rightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2009}{4022}\)
\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\)\(=\frac{2009}{4022}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\)\(=\frac{2009}{4022}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2009}{4022}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2009}{4022}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2011}\)
\(\Rightarrow x+1=2011\)
\(\Rightarrow x=2010\)
Tim x biet :
a, \(4\frac{1}{3}\left(\frac{1}{6}-\frac{1}{2}\right)\le x\le\frac{2}{3}\left(\frac{1}{2}-\frac{1}{3}-\frac{3}{4}\right)\) x thuoc Z
b , \(|x-3|+1=x\)
tim n thuoc N
\(\frac{n-2}{n+2}-\frac{n-1}{n+2}+\frac{-4}{n+2}\)
\(\frac{n-2}{n+2}-\frac{n-1}{n+2}+\frac{-4}{n+2}=\frac{n-2-n-1+\left(-4\right)}{n+2}=\frac{\left(n-n\right)-2-1+\left(-4\right)}{n+2}=\frac{-7}{n+2}\)
\(\Rightarrow n+2\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
\(n+2\) | \(-7\) | \(-1\) | \(+1\) | \(+7\) |
\(n\) | \(-9\) | \(-3\) | \(-1\) | \(5\) |
tim x thuoc Z biet : 2x+\(\frac{1}{7}=\frac{1}{y}\)
1)tim x biet
\(\frac{x-2}{-3}\)=\(\frac{25}{15}\)
2)tim x thuoc Z
\(\frac{x-1}{4}\) =\(\frac{8}{3}\)
3)tim x y thuoc Z biet
\(\frac{x}{7}\)=\(\frac{9}{y}\) va x>y