Chứng tỏ rằng: 1.3.5.7.9. ... .197.199 = 101/2 . 102/2 . 103/2 . ... . 200/2
Giúp mình nhé các bạn!
Chứng minh rằng:
1.3.5.7.9.....197.199=\(\frac{101}{2}+\frac{102}{2}+\frac{103}{2}+...+\frac{200}{2}\)
Chứng tỏ rằng :1.5.7...197.199=\(\frac{101}{2}.\frac{102}{2}.\frac{103}{2}...\frac{200}{2}\)
#)Giải :
Ta có : \(\frac{101}{2}.\frac{102}{2}.\frac{103}{2}.....\frac{200}{2}=\frac{101.102.103.....200}{2^{100}}=\frac{\left(101.102.103.....200\right)\left(1.2.3.....100\right)}{2^{100}\left(1.2.3.....100\right)}\)
\(=\frac{1.2.3.....200}{\left(2.1\right)\left(2.2\right)\left(2.3\right)...\left(2.100\right)}=\frac{\left(1.3.5.....99\right)\left(2.4.6.....100\right)}{2.4.6.....200}=1.3.5.....99\left(đpcm\right)\)
Ta có : 1.3.5.7.....199 = \(\frac{\left(1.3.5.7.....199\right).\left(2.4.6.8.....200\right)}{2.4.6.8.....200}=\frac{1.2.3.4.5.....199.200}{\left(1.2\right).\left(2.2\right).\left(3.2\right).....\left(100.2\right)}=\frac{1.2.3.4.5.....199.200}{2^{100}.1.2.3.....100}=\frac{101.102.103.....200}{2^{100}}\)\(=\frac{101}{2}.\frac{102}{2}\frac{103}{2}.....\frac{200}{2}\)\( \left(ĐPCM\right)\)
Chứng tỏ 1.3.5.7.9....197.199=101/2.102/2.103/2....200/2
Chứng tỏ :1.3.5.7.9....197.199=101/2.102/2.103/2.....200/2
chứng minh rằng : 1.3.5.7....197.199 = \(\frac{101}{2}.\frac{102}{2}.\frac{103}{2}....\frac{200}{2}\)
1.3.5.....197.199 = \(\frac{\left(1.3.5.....197.199\right)\left(2.4.6.....198.200\right)}{2.4.6......198.200}\)= \(\frac{1.2.3......199.200}{2^{100}.\left(1.2.3.....100\right)}=\frac{101.102.103......200}{2^{100}}=\frac{101}{2}.\frac{102}{2}.\frac{103}{2}.....\frac{200}{2}\)
chứng tỏ rằng:1.3.5.7...197.199=101/2.102/2.103/2...200/2
\(\frac{101}{2}\times\frac{102}{2}\times\frac{103}{2}\times...\times\frac{200}{2}\)
\(=\frac{1.2.3.....100.101.102.103.....200}{1.2.3.....100.2^{100}}\)
\(=\frac{\left(1.3.5.....199\right).\left(2.4.6.....200\right)}{\left(1.2\right).\left(2.2\right).\left(3.2\right).....\left(100.2\right)}\)
\(=1.3.5.....199\)
Chứng tỏ rằng 1/101+1/102+1/103+...+1/200>1/2
Chứng tỏ rằng 1/101+1/102+1/103+...+1/200>1/2
Ta có: \(\dfrac{1}{101}>\dfrac{1}{200};\dfrac{1}{102}>\dfrac{1}{200};....;\dfrac{1}{199}>\dfrac{1}{200}\)
\(\Rightarrow\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}>\dfrac{1}{200}+\dfrac{1}{200}+...+\dfrac{1}{200}=\dfrac{100}{200}=\dfrac{1}{2}\)
Vậy...
Chứng tỏ rằng: 1/101+1/102+1/103+......+1/200 > 1/2
đặtA=1/101+1/102+1/103+...+1/200<1/200x100
=1/2
=>A<1/2
Ta có: 1/101 > 1/200
1/102 > 1/200
1/103 > 1/200
........
1/199 > 1/200
1/200 = 1/200
=>1/101 +1/102 +1/103 +.... +1/199 +1/200 > 1/200 + 1/200 +1/200 +..... +1/200
=>1/101 + 1/102 +1/103 +..... +1/200 > 1/200x100 = 1/2
Vậy biểu thức đã cho > 1/2