Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Doraemon
Xem chi tiết
Ninh
21 tháng 7 2018 lúc 10:34

\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2004\cdot2005}+\frac{1}{2005\cdot2006}\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2004}-\frac{1}{2005}+\frac{1}{2005}-\frac{1}{2006}\)

\(A=1-\frac{1}{2006}=\frac{2005}{2006}\)

Phạm Tuấn Đạt
21 tháng 7 2018 lúc 10:32

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2005.2006}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2005}-\frac{1}{2006}\)

\(\Rightarrow A=1-\frac{1}{2006}\)

\(\Rightarrow A=\frac{2005}{2006}\)

나 재민
21 tháng 7 2018 lúc 10:37

\(1)A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2004.2005}+\frac{1}{2005.2006}\)

\(\implies A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2004}-\frac{1}{2005}+\frac{1}{2005}-\frac{1}{2006}\)

\(\implies A=1-\frac{1}{2006}\)

\(\implies A=\frac{2005}{2006}\)

Nguyễn Ngọc Sơn Lâm
Xem chi tiết
Thao Nhi
1 tháng 5 2016 lúc 21:16

\(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2015}-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2016}\right)\)

\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2015}+\frac{1}{2016}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2016}\right)\)

\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}+\frac{1}{2016}-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{1003}\right)\)

\(\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2016}\)

đăng việt cường
1 tháng 5 2016 lúc 21:17

Đặt A=1-1/2+1/3-1/4+.......+1/2005-1/2006

=>A= (1+1/3+1/5+...+1/2005)-(1/2+1/4+1/6+.....+1/2006)

=>A=(1+1/2+1/3+...+1/2005)-2.(1/2+1/4+1/6+...+1/2006)

=>A=(1+1/2+1/3+....+1/2005)-(1+1/2+1/3+...+1/1003)

=>A=1/1004+1/1005+.....+1/2006

Vậy A=1/1004+1/1005+.....+1/2006 ( Điều phải chứng minh )


 

ta xuan mai
1 tháng 12 2016 lúc 21:44

đúng ko

Đặng Thanh Phương
Xem chi tiết
Thanh Tùng DZ
12 tháng 5 2020 lúc 18:42

Ta có :

\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)

\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

Khách vãng lai đã xóa
Đặng Thanh Phương
12 tháng 5 2020 lúc 20:41

cảm ơn bạn nha

Khách vãng lai đã xóa
Nguyễn Thị Yến Chi
Xem chi tiết
Nguyễn Hưng Phát
12 tháng 2 2016 lúc 20:45

y=\(\frac{2006x2005-1}{2004x2006+2005}=\frac{2006x2005-1}{\left(2005-1\right)x2006+2005}=\frac{2006x2005-1}{2005x2006-2006+2005}=\frac{2006x2005-1}{2005x2006-1}=1\)

Hoàng Thu Hà
Xem chi tiết
Nguyễn Hương Ly
Xem chi tiết
Trịnh Ngọc Thành
Xem chi tiết
Lê Tùng lâm
5 tháng 9 2015 lúc 20:11

A=1/1.2+1/12+...+1/99.100

A=7/12+...1/99.100

Suy ra A>7/12 (1)

A=1-1/2+1/3-1/4+...+1/99-1/100

A=(1/2+1/3)-(1/4-...+1/100)

A=5/6-(1/4-...+1/100)

suy ra A<5/6 (2)

Vậy 7/12<A<5/6

chắc chắn đúng

Nguyễn Ngọc Quý
5 tháng 9 2015 lúc 19:59

Lê Tùng lâm bài của bạn chưa đúng vì

A = \(\frac{1}{1.2}+\frac{1}{3.4}+.....+\frac{1}{99.100}\)

Chứ không phải là: \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{98.99}+\frac{1}{99.100}\)

Nguyễn Hương Ly
Xem chi tiết
Minh Triều
1 tháng 7 2015 lúc 9:47

huj nãy sai đề hẻn chj ko làm dc

Minion
Xem chi tiết