Tìm các số tự nhiên m,n thỏa mãn:
\(\frac{1}{4}\)(m - n) (m + n) [ 1 + (-1)m+n ] = 2003
tìm các số tự nhiên m và n thỏa mãn ;\(\frac{m}{2}-\frac{2}{n}=\frac{1}{2}\)
=> \(\frac{m}{2}-\frac{1}{2}=\frac{2}{n}\)
=> \(\frac{m-1}{2}=\frac{2}{n}\)
=> n(m-1)=4
Mà m-1 lẻ => \(m-1\varepsilon\) \(Ư\) lẻ của 4 = { -1; 1}
=> m \(\varepsilon\) { 0; 2 }
=> n \(\varepsilon\) { -4; 4 }
số tự nhiên mà bạn vậy m thuộc 0 va 2 con n=4
tìm tất cả các số tự nhiên n sao cho với mọi số tự nhiên n thỏa mãn 1<n<m/2 thì (m-n)/n không phải phân số tối giản
Bài 1:Tìm các số tự nhiên m và n thỏa mãn:\(\frac{m}{2}-\frac{2}{n}=\frac{1}{2}\)
Bài 2:Cho phân số A =\(\frac{6.n-1}{3.n+2}\)( n là số tự nhiên)
a)Tìm n để giá trị của A là số tự nhiên
b)Tìm n để A có giá trị nhỏ nhất
Các bạn giải ra hộ mính nhé!
Bài 1:
Ta có \(\frac{m}{2}-\frac{2}{n}=\frac{1}{2}\) =>\(\frac{m}{2}-\frac{1}{2}=\frac{2}{n}\)
=>\(\frac{m-1}{2}=\frac{2}{n}\)
=> n(m-1) = 4
=> n và m-1 thuộc Ư(4)={1;2;4}
Ta có bảng sau:
m-1 | 1 | 2 | 4 |
n | 4 | 2 | 1 |
m | 2 | 3 | 5 |
Vậy (m;n)=(2;4),(3;2),(5;1)
1) Tìm các số tự nhiên n để số 3^n+19 là số chính phương
2) Cho m,n là 2 số nguyên dương thỏa mãn m+n-1 là 1 số nguyên tố và m+n-1 là 1 ước của 2(m^2+n^2)-1 CMR m=n
Câu 15. Tìm số tự nhiên m thỏa mãn 202018 < 20m < 202020?
A. m = 2020. B. m = 2019. C. m = 2018. D. m = 20.
Câu 16. Tìm số tự nhiên n thỏa mãn 3n = 81
A. n = 2 B. n = 3 C. n = 4 D. n = 8
Câu 17: Viết kết quả phép tính sau dưới dạng một luỹ thừa: 87: 8 là:
A. 86 B. 85 C. 84 D. 83
Câu 18: Cho biều thức M = 75 + 120 + x. Giá trị nào của x dưới đây thì M ⋮ 3
A.x = 7 B.x= 5 C.x =4 D.x =12
Câu 19: Tổng nào sau đây chia hết cho 7 ?
A.49 + 70 B.14 + 51 C.7 + 134 D.10+16
Câu 20: Số tự nhiên m chia cho 45 dư 20 có dạng là:
A. 45 + 20k B. 45k – 20 C. 45 – 20k D. 45k + 20
Câu 21: Điền chữ số vào dấu * để chia hết cho 3:
A. {0; 3; 6}. B.{1; 3; 6; 9}. C.{3; 6; 9}. D.{0; 6; 9}.
15.B
16.C
17.A
18.D
19.A
còn câu 20,21 mình sợ mình làm sai nên k ghi đáp án sorry bạn nha:(
cho 2 số tự nhiên m,n thỏa mãn \(\frac{m+1}{n}+\frac{n+1}{m}\) là số nguyên.CMR UCLN(m,n) không lớn hơn \(\sqrt{m+n}\)
bạn Lan tính tổng các số tự nhiên liên tiếp từ 1 đến n và nhận thấy số đó chia hết cho 29. Loan tính tổng các số tự nhiên từ 1 đến m và cũng nhận thấy tổng đó chia hết cho 29. tìm các số tự nhiên m và n thỏa mãn điều kiện m<n<50
Cho m, n là 2 số tự nhiên lớn hơn 0 thỏa mãn \(\frac{m+1}{n}+\frac{n+1}{m}\inℤ.\) CM : (m, n) \(\le\sqrt{m+n}\).
Đặt \(d=\left(m,n\right)\)
Ta có :\(\hept{\begin{cases}m=ad\\n=bd\end{cases}}\)với \(\left(a,b\right)=1\)
Lúc đó
\(\frac{m+1}{n}+\frac{n+1}{m}=\frac{ad+1}{bd}+\frac{bd+1}{ad}=\frac{\left(a^2+b^2\right)d+a+b}{abd}\)là số nguyên
Suy ra \(a+b⋮d\Rightarrow d\le a+b\Rightarrow d\le\sqrt{d\left(a+b\right)}=\sqrt{m+n}\)
Vậy \(\left(m,n\right)\le\sqrt{m+n}\)(đpcm)
CM :nếu m , n là 2 số tự nhiên thỏa mãn : 3*m*m+m = 4*n*n+n thì m - n và 4*m+4*n+1 đều là số chính phương