Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dang Hoang Mai Han
Xem chi tiết
Yen Nhi
11 tháng 9 2021 lúc 20:59

a. tìm a là số tự nhiên để 17a+8 là số chính phương

Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)

\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)

\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)

Khách vãng lai đã xóa
Vũ Nguyễn Việt Anh
Xem chi tiết
D O T |✽「 Hào」亗
Xem chi tiết
Nguyễn Linh Chi
12 tháng 12 2019 lúc 16:30

Câu hỏi của Đinh Quốc Việt - Toán lớp 6 - Học toán với OnlineMath

Em tham khảo link này nhé!

Khách vãng lai đã xóa
Link Pro
Xem chi tiết
Nkoc Nki Nko
8 tháng 11 2015 lúc 16:09

Với n = 1 thì 1! = 1 = 1² là số chính phương . 
Với n = 2 thì 1! + 2! = 3 không là số chính phương 
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương 
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương . 
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.

nguyễn tùng dương
Xem chi tiết
Yuu Shinn
9 tháng 2 2016 lúc 14:51

đặt s(n) = 1! + 2! + ... + n! 
s(1) = 1 và s(3) = 9 là số chính phương. 
s(2) = 3 và s(4) = 33 không là số chính phương. 
Với n ≥ 5 có n! chia hết cho 10 - do trong tích có 2 thừa số là 2 và 5 - nên n! tận cùng bằng 0 
Vậy với n ≥ 5 có s(n) = s(4) + 5! + ... + n! tận cùng bằng 3. Do số chính phương không tận cùng bằng 3 (chỉ tận cùng bằng 0, 1, 4, 5, 6, 9) nên với n ≥ 5 có s(n) không là số chính phương. 
Vậy chỉ với n = 1 và n = 3 tổng đã cho là số chính phương.

Nguồn: yahoo

Bui Chi Dung 1
9 tháng 2 2016 lúc 14:57

n=1 hoac n=3

Nakamori Aoko
Xem chi tiết
Dương Lan Hương
Xem chi tiết
Nguyễn Hồng Mi
Xem chi tiết
Vananh11062001
Xem chi tiết
Phạm Thế Mạnh
4 tháng 1 2016 lúc 22:34

\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1=\left(n^2+3n\right)\left(n^2+3n+2\right)+1=\left(n^2+3n+1\right)^2\)là chính phương
mà \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+2\) cũng là chính phương 
\(\Leftrightarrow\left(n^2+3n+1\right)^2=0\)
pt vô nghiệm

Vananh11062001
4 tháng 1 2016 lúc 22:32

ok pạn Phạm thế mạnh

Nguyễn Quốc Khánh
4 tháng 1 2016 lúc 22:35

ta có

\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+2\)

\(=\left[n\left(n+3\right)\right].\left[\left(n+1\right)\left(n+2\right)\right]+2\)

\(\left(n^2+3n\right)\left(n^2+3n+2\right)+2\)

Đặt n^2+3n+1=a

=>(a-1)(a+1)+2=a^2-1+2=a^2+1

=>Sai đề

Nếu thấy câu trả lời của mình đúng thì tick nha bạn,cảm ơn nhiều.