Cho:
A=1-3+3^2-3^3+...-3^2003+3^2004
Chứng minh A là lũy thừa của 3
>:) hehhe
a) Cho A=1-3+3^2-3^3+...-3^2003+3^2004.Chứng minh 4A-1 là lũy thừa của 3
b) Chứng minh rằng A là một lũy thừa của 2 với A=4+2^3+2^4+...+2^2003+2^2004
Từng bài 1 thôi nhs!
a) 3A = 3 - 32 + 33 - 34 + ... -32004+ 32005
3A + A = 3 - 32 + 33 -34 + ... -32004 + 32005 +1 - 3 + 32- 33 + 34 - ....-32003+32004
4A = 32005 + 1
=> 4A - 1 = 32005 là lũy thừa của 3
=> ĐPCM
đề có thiếu ko đó
A = 4 + 23 + 24 + 25 + ...+ 22003 + 22004
đặt B = 23 + 24 + 25 + ...+ 22003 + 22004
2B= 24 + 25 + 26 + ....+ 22004 + 22005
2B-B= ( 24 + 25 + 26 + ....+ 22004 + 22005 ) - ( 23 + 24 + 25 + ...+ 22003 + 22004 )
B = 24 + 25 + 26 + ....+ 22004 + 22005 - 23 - 24 - 25 - ...- 22003 - 22004
B = 22005 - 23
B = 22005 - 8
=> A = 4 + B = 4 + 22005 - 8 = 22005 - 4 = .....
Cho A= 1-3+3^2-3^3+...-3^2003+3^2004
a, CMR 4A-1 là lũy thừa của 3
b, CMR A là lũ thừa của 2 vs A= 4+2^3+2^4+2^5+...+2^2003+2^2004
Giải giúp mình nha...~~~!!!!!
cho A=1-3+3^2-3^3+...-3^2003+3^2004. C/m 4a-1 là lũy thừa của 3
3A=3-32+33-34+............+32003-32004+32005
3A+A=(3-32+33-34+............+32003-32004+32005)+(1-3+32-33+.............+32002-32003+32004)
4A=32005-1
4A-1=32005
Vậy 4A-1 là lũy thừa của 3(đpcm)
3A=3-32+33 -34 +.........-32004+32005
3A+A=3-3^2+3^3-3^4+......-3^2004+3^2005+1-3+3^2-3^3+3^4-....-3^2003+3^2004
4A=3^2005+1
=>4A-1=3^2005 là lũy thừa của 3 =>ĐPCM
CHO A = 1 - 3 + 32 - 33 + ...- 32003 + 32004
CHỨNG MINH RẰNG : 4A - 1 LÀ LŨY THỪA CỦA 3
CHO A= 1 - 3 + 3^2 - 3^3 + ............................... - 3^2003 + 3^2004
CMR 4A - 1 LÀ LŨY THỪA CỦA 3
bạn vào cái trang mình đưa bạn ấy câu hỏi trước á
Ta có:A=1-3+32-33+........-32003+22004
3A=3-32+33-34+..........+32003-32004+32005
3A+A=4A=1+32005
4A-1=32005
Vậy 4A-1 là lũy thừa của 3(đpcm)
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Cho A=1 - 3 + 3^2 - 3^3 +..........- 3^2003 + 3^2004
Chứng minh 4a - 1 là lũy thừa của 3
giải nhanh nha mình sắp phải nộp rồi ai giải dc sẽ like
3A = 3 - 3^2 + 3^3 - 3^4 + ... -3^2004 + 3^2005
3A + A = 3 - 3^2 + 3^3 -3^4 + ... -3^2004 + 3^2005 +1 - 3 + 3^2- 3^3 + 3^4 - ....-3^2003+3^2004
4A = 3^2005 + 1
=> 4A - 1 = 3^2005 là lũy thừa của 3 => ĐPCM
Mình có nghe nói là 2 nhà toán học Alfred North Whitehead và Bertrand Russell đã chứng minh 1+1=2 trong quyển Principa Mathemaa (tạm dịch: nền tảng của toán học). Họ đã mất hơn 360 trang để chứng minh điều này. Thầy giáo bạn gãi đầu là phải.
Phép chứng minh này dựa trên một bộ 9 tiên đề về tập hợp gọi tắt là ZFC (Zermelo–Fraenkel). Rất nhiều lý thuyết số học hiện đại dựa trên những tiên đề này. Nếu có người chứng minh được một trong những tiên đề đó là sai (VD: 2 tập hợp có cùng các phần tử mà vẫn không bằng nhau) thì rất có thể dẫn đến 1+1 != 2
Cho A=1-3+32-33+...-32003+32004.CMR:4A-1 là lũy thừa của 3
\(A=1-3+3^2-3^3+3^4...-3^{2003}+3^{2004}\)
\(\Rightarrow3A=3-3^2+3^3-3^4+...-3^{2004}+3^{2005}\)
\(\Rightarrow3A+A=3^{2005}+1\)
\(\Rightarrow4A=3^{2005}+1\)
\(\Rightarrow4A-1=3^{2005}+1-1\)
\(\Rightarrow4A-1=3^{2005}\)
\(\Rightarrow4A-1\) là một lũy thừa của \(3\)
cảm ơn nhiều😍😍😍
A=:1-3+32-33+...-32003+32004 CMR:4A-1 là lũy thừa của 3
a] Chứng minh rằng a là 1 lũy thừa của 2 với A= 4+2^2+2^3+2^4+...+2^20
b] Chứng minh rằng 2A+3 là 1 lũy thừa của 3 với A=3+3^2+3^3+...3+3^100
a, Có 2A = 4.2+2^3+2^4+...+2^21
A=2A-A=(4.2+2^3+2^4+...+2^21)-(4+2^2+2^3+...+2^20) = 4.2 + 2^21 - 4 - 2^2 = 2^21
=> A là lũy thừa cơ số 2
b, Có 3A=3^2+3^3+3^4+...+3^101
2A=3A-A=(3^2+3^3+3^4+....+3^101)-(3+3^2+3^3+....+3^100) = 3^101-3
=> 2A+3 = 3^101-3+3 = 3^101
=> A là lũy thừa của 3
k mk nha