CHo a,b,c>0 Tìm Min của \(\frac{ab}{a^2+b^2}+\frac{a^2+b^2}{ab}\)
Cho ab+bc+ca=abc ; a,b,c >0 Tìm min \(A=\frac{a^2}{a+bc}+\frac{b^2}{b+ac}+\frac{c^2}{c+ab}\)
\(A=\frac{a^2}{a+bc}+\frac{b^2}{b+ca}+\frac{c^2}{c+ab}\)cho ab+bc+ca=abc và a,b,c>0 Tìm min
\(\frac{a^2}{a+bc}=\frac{a^3}{a^2+abc}=\frac{a^3}{a^2+ab+bc+ac}=\frac{a^3}{\left(a+b\right)\left(a+c\right)}\)
Áp dụng BĐT cosi
\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\ge\frac{3}{4}a\)
Tương tự
=> \(A\ge\frac{3}{4}\left(a+b+c\right)-\frac{1}{2}\left(a+b+c\right)=\frac{1}{4}\left(a+b+c\right)\)
Lại có \(\left(a+b+c\right)\ge\frac{9}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}=\frac{9}{1}=9\)
=> \(A\ge\frac{9}{4}\)
MinA=9/4 khi a=b=c=3
cho a,b>0; a+b-1>0 :\(\left(a+b-1\right)^2=ab\)
tìm min của \(\frac{1}{ab}+\frac{1}{a^2+b^2}+\frac{\sqrt{ab}}{a+b}\)
Cho a,b,c>=0 tm ab+bc+ca=1.Tìm Min B=\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\)
Ta có \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)=3.1=3\) \(\Rightarrow a+b+c\ge\sqrt{3}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel
\(B=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{\sqrt{3}}{2}\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\\ab+bc+ca=1\end{cases}}\) \(\Leftrightarrow\) \(a=b=c=\frac{\sqrt{3}}{3}\)
Cho \(a,b,c>0;a+b+c\le1\). tìm min của \(S=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)
cho a,b,c >0 và ab+bc+ac=abc
Tìm min của biểu thức: \(P=\frac{\sqrt{b^2+2a^2}}{ab}+\frac{\sqrt{a^2+2c^2}}{ac}+\frac{\sqrt{c^2+2b^2}}{bc}\)
cho a,b>0 và a+b=1 Tìm Min của
a, A=\(\frac{1}{ab}+\frac{1}{a^2+b^2}\)
b,B=\(\frac{2}{ab}+\frac{3}{a^2+b^2}\)
c,C=\(\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\)
bài 2 Tìm Min
D=\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\) (a,b,c>0)
a.
\(A=\frac{1}{ab}+\frac{1}{a^2+b^2}=\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\frac{1}{2ab}\)
\(\ge\frac{4}{a^2+2ab+b^2}+\frac{1}{2ab}\ge\frac{4}{\left(a+b\right)^2}+\frac{1}{\frac{\left(a+b\right)^2}{2}}=6\)
Dấu "=" khi \(a=b=\frac{1}{2}\)
b.
\(B=\frac{2}{ab}+\frac{3}{a^2+b^2}=3\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\frac{1}{2ab}\)
\(\ge3\cdot\frac{4}{\left(a+b\right)^2}+\frac{1}{\frac{\left(a+b\right)^2}{2}}=14\)
Dấu "=" khi \(a=b=\frac{1}{2}\)
c.
Ta có:
\(x^2+y^2\ge2xy\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Leftrightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\) với mọi x,y
Áp dụng ta có:
\(C=\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\ge\frac{\left(a+b+\frac{1}{a}+\frac{1}{b}\right)^2}{2}\ge\frac{\left(1+\frac{4}{a+b}\right)^2}{2}=\frac{25}{2}\)
Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)
2.
Áp dụng bất đẳng thức Bunhiacopxki ta có:
\(\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2\right]\left[\left(\frac{a}{\sqrt{x}}\right)^2+\left(\frac{b}{\sqrt{y}}\right)^2\right]\ge\left(\sqrt{x}\cdot\frac{a}{\sqrt{x}}+\sqrt{y}\cdot\frac{b}{\sqrt{y}}\right)^2\)
\(\Leftrightarrow\left(x+y\right)\left(\frac{a^2}{x}+\frac{b^2}{y}\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)
Áp dụng nó ta chứng minh được:
\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b\right)^2}{x+y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)
Áp dụng vào bài làm:
\(D=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a^2}{ab+ca}+\frac{b^2}{bc+ab}+\frac{c^2}{ca+bc}\)
\(\ge\frac{\left(a+b+c\right)^2}{ab+ca+bc+ab+ca+bc}=\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c\)
cho a;b;c>0 thỏa mãn abc+ab+bc+ca=2.tìm min của
\(P=\frac{1}{ab+a+b}+\frac{1}{bc+b+c}+\frac{1}{ca+c+a}\)
cho a,b,c >0 và a+b+c =3
Tìm min của biểu thức
\(P=\frac{1}{a^2+b^2+c^2}+\frac{2018}{ab+bc+ca}\)
\(P=\frac{2018}{a^2+b^2+c^2}+\frac{2018}{ab+bc+ac}-\frac{2017}{a^2+b^2+c^2}\)
\(P\ge2018\left(\frac{4}{a^2+b^2+c^2+ab+bc+ac}\right)-\frac{2017}{a^2+b^2+c^2}\)
\(P\ge\frac{2018.8}{\left(a+b+c\right)^2}-\frac{2017}{a^2+b^2+c^2}=\frac{2018.8}{9}-\frac{2017}{a^2+b^2+c^2}\)
Vì \(9=\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\Rightarrow a^2+b^2+c^2\ge3\)
\(P\ge\frac{2018.8}{9}-\frac{2017}{3}=...\)
P min = ... khi a=b=c = 1