Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tên mk là thiên hương yê...
Xem chi tiết
Thanh Hằng Nguyễn
28 tháng 7 2017 lúc 9:38

Giả sử phân số \(\frac{32n+4}{36n+9}\) chưa tối giản

\(\Leftrightarrow32n+4;36n+9\) có ước chung là số nguyên tố

Gọi \(d=ƯCLN\left(32n+4;36n+9\right)\)

\(\Leftrightarrow\hept{\begin{cases}32n+4⋮d\\36n+9⋮d\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}8n+1⋮d\\4n+1⋮d\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}8n+1⋮d\\8n+2⋮d\end{cases}}\)

\(\Leftrightarrow1⋮d\)

Vậy phân số trên tối giản vs mọi n

Lê Thái Thảo Nghi
Xem chi tiết
Trần Việt Hoàng
28 tháng 1 2016 lúc 17:19

bằng cách lấy ví dụ ra và..........!!!!!!!!!!!!!!!!!

van anh ta
28 tháng 1 2016 lúc 17:27

n = 1 , tick nha

Leuyenhu_
Xem chi tiết
wattif
6 tháng 3 2020 lúc 14:24

Bạn tham khảo link này:

https://olm.vn/hoi-dap/detail/85334930887.html

Khách vãng lai đã xóa
Ran
Xem chi tiết
Bùi Đăng Minh
Xem chi tiết
NGUYỄN THẾ HIỆP
25 tháng 2 2017 lúc 22:42

Đặt d=UC(32n+4,36n+9)

=> \(\hept{\begin{cases}32n+4⋮d\\36n+9⋮d\end{cases}\Rightarrow}8\left(36n+9\right)-9\left(32n+4\right)⋮d\Leftrightarrow36⋮d\)

=> d=1,2,3,6,12,18,36

Ta thấy: 36n+9 không chia hết cho 2 => d=1,3

Để phân số tối giản d\(\ne\)3

mà 36n+9 chia hết cho 3

=> 32n+4 không chia hết cho 3 hay 2n+1 không chia hết cho 3 

=> \(\orbr{\begin{cases}2n+1=3k+1\\2n+1=3k+2\end{cases}\Leftrightarrow}\orbr{\begin{cases}n=\frac{3k}{2},k_{ }chẵn\\n=\frac{3k+1}{2},k_{ }lẻ\end{cases}}\)

Vậy với n=... thì phân số tối giản

Nguyễn Minh Hiền
Xem chi tiết
nguyễn tuấn anh
Xem chi tiết
Kẻ Ẩn Danh
24 tháng 2 2015 lúc 16:06

Trong sách nâng cao và phát triển toán 6 tập 2 có bài 408 giống dang này đấy, chép giải vào là ok.

Trần Thanh Huyền
Xem chi tiết
Cao yến Chi
Xem chi tiết
Nguyễn Phương Uyên
14 tháng 4 2020 lúc 14:31

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

Khách vãng lai đã xóa
Nguyễn Thị Huyền Trang
14 tháng 4 2020 lúc 14:50

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

Khách vãng lai đã xóa
Cao yến Chi
15 tháng 4 2020 lúc 13:45

các bn giải hộ mk bài 2 ik

thật sự mk đang rất cần nó!!!

Khách vãng lai đã xóa