Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Thị Khánh Ly
Xem chi tiết
Lê Thị Bành
Xem chi tiết
Feliks Zemdegs
Xem chi tiết
Trần Thị Loan
15 tháng 6 2015 lúc 16:34

135 = 5.33

=> số nhân với 135 để được số chính phương phải chứa lũy  thừa của   5 và 3 để 3 và 5 có  l ũy thừa chẵn

Mà số đó có 2 chữ số => Số đó có thể là : 5.3 = 15 hoặc 22. 5.3 = 60

Yuan Bing Yan _ Viên Băn...
15 tháng 6 2015 lúc 17:36

15 và 60              

phan văn đức
9 tháng 3 2017 lúc 16:11

135 = 5.33

=> số đó x với 135 đẻ được số chính phương chứa lũy thừa của 5 và 3 dể 3 và 5 có lũy thừa chẵn 

Mà số đó có 2 CS => số đó có thể là : 5.3 = 15 hoặc 2. 5 . 3 = 60

Đáp số : 60 

Việt Quang Đỗ
Xem chi tiết
Trần Thị Loan
27 tháng 7 2015 lúc 22:44

2x +1 là số lẻ nên (2x+1)là số chính phương lẻ 

120 < (2x+1)2 < 200 => (2x+1)= 121 ; 169

+) (2x+1)= 121 => 2x + 1= 11 hoặc -11=> x = 5 hoặc x = -6

+) (2x+1)= 169 => 2x + 1 = 13 hoặc 2x + 1= -13 => x = 6 hoặc x = -7

Vậy....

Tran Tuan Phi
1 tháng 1 2016 lúc 17:47

nswfhceqohvewoi

 

Trần Thị Hải
Xem chi tiết
Nguyễn Viết Lâm Phong
17 tháng 1 2016 lúc 20:05

15 tick nha

 

Mai Nhật Lệ
Xem chi tiết
Mai Nhật Lệ
12 tháng 1 2016 lúc 19:04

Dao Thi Yen ko làm đc thì đừng có phá nhé

Vũ Đình Phúc
Xem chi tiết
Nguyễn Minh Nghĩa
11 tháng 4 2021 lúc 16:16

Gọi số phải tìm là \(\overline{abcd}=n^2\)
nên số viết theo thứ tự ngược lại là \(\overline{dcba}=m^2\) với \(m,n\inℕ\)và m>n
Do \(1000\le\overline{abcd},\overline{dcba}\le9999\) nên \(1000\le m^2,n^2\le9999\)
Mà \(m^2,n^2\)là số chính phương và \(m,n\inℕ\)
\(\Rightarrow1024\le m^2,n^2\le9801\)

\(\Rightarrow32\le m,n\le99\)
Do \(\overline{dcba}⋮\overline{abcd}\Rightarrow m^2⋮n^2\Rightarrow m⋮n\)
Đặt \(m=kn\forall k\inℕ^∗,k\ge2\Rightarrow\overline{dcba}=k^2.\overline{abcd}\)
Ta có: \(m=kn\le99,n\ge32\)
=> 32.k.n ≤ 99n => k ≤ 99/32 => k≤ 3 \(\Rightarrow32kn\le99n\Rightarrow k\le\frac{99}{32}\Rightarrow k\le3\)
Như vậy: \(k\in\left\{2;3\right\}\)
+Nếu k = 2 thì: dcba = 4.abcd
Theo a € {1,4,6,9}: nếu a=4 thì: dcb4 = 4bcd . 4 > 9999 => a chỉ có thể là 1.
Khi đó: dcb1 = 4. 1bcd ≤ 4.1999 = 7996 => d ≤ 7. Kết hợp với đc: d= 4 hoặc d =6
Với d=4: <=> 390b+15=60c <=> 26b+1=4c (vô lý vì vế trái chẵn còn vế phải lẻ)
Với d = 6: <=> 390b+23 = 60c+2000 (cũng vô lý)
+Như vậy: k =3. Khi đó: dcba = 9.abcd
a chỉ có thể là 1 và d = 9. Khi đó: <=> 9cb1 = 9.1bc9
<=> 10c = 800b+80 <=> c = 80b+8
Điều này chỉ có thể xảy ra <=> b=0 và c=8
KL: số phải tìm là: 1089

Khách vãng lai đã xóa
Vũ Đình Phúc
14 tháng 4 2021 lúc 20:10

thank you nha

Khách vãng lai đã xóa
Hưng Nguyễn
Xem chi tiết
lê thị ngọc anh
25 tháng 8 2018 lúc 20:03

Gọi số phải tim là Aab
ta có A = k^2 suy ra 100 A =(10k)^2 (1)
Aab=q^2 (2)
Lấy (2) - (1) ta có:
ab = q^2 - (10k)^2 = (q - 10k)(q + 10k)
Nhận xét: Nếu đặt (q - 10k) = m
thì (q + 10k) = m +20k
Do đó ab = m(m+20k)
Dùng chặn sẽ ra

mk ko bt có đúng ko đâu

Trần Thị Hồng
25 tháng 8 2018 lúc 20:04

Gọi số phải tìm là a^2. Sau khi xóa ta đc b^2. 
theo đầu bài ta xóa 2 CS cuối nghĩa là a^2 = 100* b^2 + D ( trong đó D là một số có 2 CS) 
<=> a^2 - 100*b^2 = D 
<=> (a-10b)(a+10b) = D 
Ta có vài nhận xét sau: 
1) a^2 phải có ít nhất 3CS ( để còn xóa đc 2CS cuối^^) 
2)a-10b>0 
3) a+10b <100 
Suy ra 
b chỉ có thể bằng 1,2,3,4 
( nếu b=5 thì đồng thời a>50 và a<50 
b=6 thì đồng thời a>60 và a<40.... 
làm gì có ) 
TH1: b=4 
=> a có dạng 16xx && 40<a<60 
=> 1600<a^2<3600 
=> chỉ có số 1681=41^2 thỏa mãn 

TH2: b=3 
=> a có dạng 9xx && 30<a<70 
=> 900<a^2<4900 
=>chỉ có 31^2 = 961 thỏa mãn 

TH3: b=2 
=>...thật ra không cần phải xét vì đầu bài yêu càu tìm sồ lớn nhất thôi. Các số trong các TH dưới đều có 3CS. Chỉ có TH 1 có 4CS 
Nên: Số lớn nhất cần tìm là 1681

Hoàng
Xem chi tiết