\(\frac{x-3}{2012}+\frac{x-2}{2013}=\frac{x-2013}{2}+\frac{x-2012}{3}\)
Tìm x biết : \(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2004}\right)x=\frac{2013}{1}+\frac{2012}{2}+...+\frac{2}{2012}+\frac{1}{2013}\)
\(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)x=\frac{2013}{1}+\frac{2012}{2}+...+\frac{2}{2012}+\frac{1}{2013}\)
\(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)x=\left(\frac{2012}{2}+1\right)+...+\left(\frac{2}{2012}+1\right)+\left(\frac{1}{2013}+1\right)+1\)
\(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)x=\frac{2014}{2}+...+\frac{2014}{2012}+\frac{2014}{2013}+\frac{2014}{2014}\)
\(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)x=2014.\left(\frac{1}{2}+...+\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}\right)\)
\(x=\frac{2014.\left(\frac{1}{2}+...+\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}}\)
\(x=2014\)
tìm x biết :(\(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}.x=\frac{2013}{1}+\frac{2012}{2}+....+\frac{2}{2012}+\frac{1}{2013}\)
a , | 3 - 2x | = x + 1
b , \(\left(\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{2014}\right).x=\frac{2013}{1}+\frac{2012}{2}+......+\frac{2}{2012}+\frac{1}{2013}\)
a, ĐK: \(x+1\ge0\Leftrightarrow x\ge-1\)
Ta có: |3-2x|=x+1
=>\(\orbr{\begin{cases}3-2x=x+1\\3-2x=-x-1\end{cases}\Rightarrow\orbr{\begin{cases}x+2x=3-1\\-x+2x=3+1\end{cases}\Rightarrow}\orbr{\begin{cases}3x=2\\x=4\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{2}{3}\left(tmđk\right)\\x=4\left(tmđk\right)\end{cases}}}\)
Vậy x=2/3 hoặc x=4
b, Xét VP ta có: \(\frac{2013}{1}+\frac{2012}{2}+...+\frac{2}{2012}+\frac{1}{2013}=2013+\frac{2012}{2}+...+\frac{2}{2012}+\frac{1}{2013}\)
\(=1+\left(1+\frac{2012}{2}\right)+\left(1+\frac{2011}{3}\right)+...+\left(1+\frac{2}{2012}\right)+\left(1+\frac{1}{2013}\right)\)
\(=\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2012}+\frac{2014}{2013}+1\)
\(=\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2013}+\frac{2014}{2014}=2014\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)\)
=>\(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)x=2014\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)\)
=>\(x=\frac{2014\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}}=2014\)
Vậy x=2014
(\(\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)x=\frac{2013}{1}+\frac{2012}{2}+...+\frac{2}{2012}+\frac{1}{2013}\)
tìm x
Ta có: \(\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)x=2013+\frac{2012}{2}+...+\frac{2}{2012}+\frac{1}{2013}\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)x=1+\left(1+\frac{2012}{2}\right)+...+\left(1+\frac{2}{2012}\right)+\left(1+\frac{1}{2013}\right)\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)x=\frac{2014}{2014}+\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2012}+\frac{2014}{2013}\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)x=2014.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}+\frac{1}{2014}\right)\)
\(\Rightarrow x=2014\)
Lưu ý: số 2013 ở dòng T2 được tách ra làm 2013 số 1
\(\frac{x-1}{2013}\)+\(\frac{x-2}{2012}\)+\(\frac{x+3}{2013}\)+...+\(\frac{x-2012}{2}\)= 2012 ;
giải phương trình
\(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right).x=\frac{2013}{1}+\frac{2012}{2}+...+\frac{2}{2012}+\frac{1}{2013}\)Tìm x biết:
tìm x biết: \(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right).x=\frac{2013}{1}+\frac{2012}{2}+...+\frac{2}{2012}+\)\(\frac{1}{2013}\)
1 giải phương trình
\(\frac{x+2011}{2013}+\frac{x+2012}{2012}=\frac{x+2010}{2014}+\frac{x+2013}{2011}\)
2 . \(\frac{x^2+2x+1}{x^2+2x+2}+\frac{x^2+2x+2}{x^2+2x+3}=\frac{7}{6}\)
Bài 1 :
Ta có :
\(\frac{x+2011}{2013}+\frac{x+2012}{2012}=\frac{x+2010}{2014}+\frac{x+2013}{2011}\)
\(\Rightarrow\left(\frac{x+2011}{2013}+1\right)+\left(\frac{x+2012}{2012}+1\right)=\left(\frac{x+2010}{2014}+1\right)\)
\(+\left(\frac{x+2013}{2011}+1\right)\)
\(\Rightarrow\frac{x+4024}{2013}+\frac{x+4024}{2012}=\frac{x+4024}{2014}+\frac{x+4024}{2011}\)
\(\Rightarrow\frac{x+4024}{2013}+\frac{x+4024}{2012}-\frac{x+4024}{2014}-\frac{x+4024}{2011}=0\)
\(\Rightarrow\left(x+4024\right)\left(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2014}-\frac{1}{2011}\right)=0\)
\(\Rightarrow x+4024=0\)
\(\Rightarrow x=-4024\)
Bài 2 :
Đặt \(x^2+2x+1=a\Rightarrow a=\left(x+1\right)^2\ge0\)
=> Phương trình trở thành
\(\frac{a}{a+1}+\frac{a+1}{a+2}=\frac{7}{6}\)
\(\Rightarrow\frac{a}{a+1}.6\left(a+1\right)\left(a+2\right)+\frac{a+1}{a+2}.6\left(a+1\right)\left(a+2\right)=\frac{7}{6}.6\left(a+1\right)\left(a+2\right)\)
\(\Rightarrow6a\left(a+2\right)+6\left(a+1\right)^2=7\left(a+1\right)\left(a+2\right)\)
\(\Rightarrow12a^2+24a+6=7a^2+21a+14\)
\(\Rightarrow5a^2+3a-8=0\)
\(\Rightarrow\left(a-1\right)\left(5a+8\right)=0\)
Vì \(a\ge0\Rightarrow a=1\)
\(\Rightarrow x^2+2x+1=1\)
\(x^2+2x=0\)
\(\Rightarrow x\left(x+2\right)=0\)
\(\Rightarrow x\in\left\{-2,0\right\}\)
Tìm x biết:
a) \(^{2^x+2^{x+1}+2^{x+2}+2^{x+3}=480}\)
b) \(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}+\frac{1}{2013}\right).x=\frac{2012}{1}+\frac{2011}{2}+\frac{2010}{3}+...+\frac{2}{2011}+\frac{1}{2012}\)
a)
\(2^x\left(1+2+2^2+2^3\right)=480\)
\(2^x.15=480\Rightarrow2^x=\frac{480}{15}=32=2^5\Rightarrow x=5\)
Chính Xác 100% là X=5
k cho mink nhé các pạn