Cho tam giác ABC cân tại A. Các điểm M, N theo thứ tự chuyển động trên các cạnh AB, AC sao cho AM = CN. a) Chứng minh đường tròn ngoại tiếp tam giác AMN luôn đi qua một điểm cố định khác A. b) Tìm quỹ tích tâm đường tròn ngoại tiếp tam giác AMN
cho tam giác ABC cân tại A. M,N là các điểm di động trên các tia AB, AC sao cho trung điểm I của MN thuộc cạnh BC. Chứn minh đường tròn ngoại iếp tam giác AMN luôn đi qua một điểm cố định khác A
cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm M di động, trên tia đối của tia AC lấy điểm N sao cho BM=CN. CMr: đường tròn ngoại tiếp tam giác AMN luôn đi qua 1 điểm cố định khác A
Cho tam giác ABC nhọn; AB<AC. Điểm D thay đổi trên BC. Điểm M và N nằm trên AB,AC tương ứng sao cho BM=MD; ND=NC. Chứng minh rằng:
a) Đường tròn ngoại tiếp tam giác AMN đi qua điểm O là tam đường tròn ngoại tếp tam giác ABC.
b) đường thẳng đi qua D và vuông góc với MN luôn đi qua 1 điểm cố định
cho tam giác cân ABC . Tren cạnh AB lấy M di động , tia đối với tia CA lấy N sao cho BM=CN . CM đường tròn ngoại tiếp AMN luôn đi qua 1 điểm cố định
Cho điểm M thuộc đáy BC của tam giác cân ABC. Kẻ các đường thẳng song song với các cạnh bên cắt AB, AC lần lượt tại D, E . I là điểm đối xứng với m qua DE. Chứng minh :
a) I thuộc đường tròn ngoại tiếp tam giác ABC
b)Khi M di chuyển trên BC thì IM luôn đi qua 1 điểm cố định
Cho tam giác ABC cân tại A. TRên các cạnh AB ; AC lần lượt lấy các điểm M và N sao cho AM + AN = AB. CHứng minh rằng: Khi M và N di chuyển trên AB và AC nhưng vẫn thỏa mãn AM + AN = AB thì đường trung trực của MN luôn đi qua một điểm cố định
cho tam giác ABC cân tại A. Các điểm E và D theo thứ tự di chuyển trên 2 cạnh AB và AD sao cho AD=CE. Chứng minh rằng các đường trung trực của DE luôn đi qua 1 điểm cố định
Cho ba điểm cố định A B C , , theo thứ tự thẳng hàng. Gọi (O) là đường tròn đường
kính AB . Lấy I là một điểm cố định nằm giữa O và B và EF là một dây cung thay đổi của
đường tròn (O) luôn đi qua I . Gọi d là đường thẳng vuông góc AC tại C . AE , AF cắt d
lần lượt tại P và Q. Đường tròn ngoại tiếp tam giác APQ cắt đường thẳng AB tại M .
1) Chứng minh rằng tứ giác PEFQ là tứ giác nội tiếp.
2) Chứng minh rằng tam giác AIF đồng dạng với tam giác AQM
3) Chứng minh rằng AF xAQ= AIx AM= ABx AC.
4) Chứng minh đường tròn ngoại tiếp APQ luôn đi qua một điểm cố định thứ hai (khác
điểm A) khi dây EF thay đổi.
Tam giác ABC cân tại A (góc À tù). Trên tia đối của tia AC lấy điểm T. Qua T kẻ đường thẳng song song với AB cắt BC tại M, qua M kẻ đường thẳng song song với AC cắt AB tại N. Chứng minh rằng: đường tròn ngoại tiếp tam giác ATN luôn đi qua một điểm cố định khác A.
Gọi O là tâm ngoại tiếp của \(\Delta\)ABC. Ta sẽ chứng minh O thuộc (ATN).
Ta có \(\Delta\)ABC cân tại A có tâm ngoại tiếp O => ^OAC = ^OAB = ^OBA => ^OAT = ^OBN
Ta thấy ^NBM = ^ABC = ^ACB = ^NMB (Do MN // AC) => \(\Delta\)MNB cân tại N => BN = MN
Lại có AN // TM, AT // MN suy ra tứ giác ATMN là hình bình hành => MN = AT
Do đó BN = AT, kết hợp với ^OAT = ^OBN, OA = OB suy ra \(\Delta\)OTA = \(\Delta\)ONB (c.g.c)
=> ^OTA = ^ONB = ^ONA => Bốn điểm O,A,T,N cùng thuộc một đường tròn
Hay đường tròn (ATN) luôn đi qua điểm O cố định (đpcm).