Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tranthithuy
Xem chi tiết
Trần Đức An
Xem chi tiết
Kcjfhrbxh
Xem chi tiết
Nguyễn Hoàng Anh Thư
Xem chi tiết
Hoàngg Ann Nhiênn
Xem chi tiết
Trung Nam Truong
Xem chi tiết
Nguyễn Thị BÍch Hậu
3 tháng 7 2015 lúc 21:06

từ đề bài => \(x^2+2y+1+y^2+2z+1+z^2+2x+1=0\Leftrightarrow\left(x^2+2x+1\right)+\left(y^2+2y+1\right)+\left(z^2+2z+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y+1\right)^2+\left(z+1\right)^2=0\)=> x=-1; y=-1 và z=-1

A=-1^2016+ -1^2016+ -1^2016=1+1+1=3

Leo Messi
Xem chi tiết
Trịnh Hữu An
21 tháng 6 2017 lúc 20:33

Do x=y=z=-1 nên ;

B=1+1+1=3;

Ban k nha...còn khi nào tìm đc lờ giải mình báo cho bạn..

Lê Minh
Xem chi tiết
Tăng Tuấn Anh
Xem chi tiết
Thiên An
27 tháng 7 2016 lúc 19:57

1) Từ \(x+y+z=6\)  và \(x^2+y^2+z^2=12\)ta dễ dàng suy ra \(xy+yz+zx=12\)

Như vậy \(x^2+y^2+z^2=xy+yz+zx\) \(\Leftrightarrow x=y=z\)

Mà \(x+y+z=6\)nên \(x=y=z=2\)thay vào Q ta tính được Q = 3.

Jin Air
30 tháng 7 2016 lúc 8:57

Bài dưới mình có làm ra được 2 cách, bạn hiểu cách nào thì làm

Cách 1: Dùng phương pháp quy nạp (cách này mình cũng không biết được sử dụng trong trg hợp này ko)

-Với n=1 thì \(2^{2n}\left(2^{2n+1}-1\right)-1=2^2\left(2^3-1\right)-1=4.8-1=27\)chia hết cho 9

Vậy mệnh đề đúng với n=1

-Giả sử tồn tại số k sao cho \(2^{2k}\left(2^{2k+1}-1\right)-1\) chia hết cho 9 (giả thiết quy nạp). Do đó,  \(2^{2k}\left(2^{2k+1}-1\right)\)chia 9 dư 1

Ta phải cm mệnh đề cũng đúng với k+1:

Thật vậy, \(2^{2\left(k+1\right)}\left(2^{2\left(k+1\right)+1}-1\right)-1=2^{2k+2}\left(2^{2k+3}-1\right)-1=2^{2k+4}\left(2^{2k+1}-\frac{1}{4}\right)-1\)

<=> \(2^{2k+4}\left(2^{2k+1}-1\right)+\frac{3}{4}\left(2^{2k+4}\right)-1=2^{2k}.16.\left(2^{2k+1}-1\right)+3.2^{2k+2}-1\)

Ta thấy:

\(2^{2k}\left(2^{2k+1}-1\right)\)chia 9 dư 1. Do đó, \(2^{2k}.16.\left(2^{2k+1}-1\right)\)chia 9 dư 7.

Các số có cơ số =2, số mũ lẻ thì tích của số đó với 3 khi chia 9 dư 6. Còn các số có cơ số =2, số mũ chẵn thì tích của số đó với 3 khi 9 dư 3. Vậy tích \(3.2^{2k+2}\) chia 9 dư 3

-1 chia 9 dư -1

Vậy \(2^{2k+4}\left(2^{2k+1}-1\right)+3.2^{2k+2}-1\)chia 9 dư 7+3-1=9 chia hết cho 9

Kết luận: Mệnh đề đúng với mọi n thuộc Z

Jin Air
30 tháng 7 2016 lúc 11:17

Cách 2: Dùng các dấu hiệu chia hết 

-Ta có (Các TH giành cho 2^(2n+1) )

+2^1; 2^7; 2^13;... tức là các số có cơ số =2, số mũ chia 6 dư 1 thì chúng chia 9 dư 2 -> 2^(2n+1)-1 chia 9 dư 1 (1)

+2^3; 2^9;2^15;.... tức là các số có cơ số =2; số mũ chia 6 dư 3 thì chúng chia 9 dư 8 -> 2^(2n+1)-1 chia 9 dư 7 (2)

+2^5;2^11;2^17;... tức là các số có cơ số =2; số mũ chia 6 dư 5 thì chúng chia 9 dư 5 -> 2^(2n+1)-1 chia 9 dư 4 (3)

Tương ứng: (Các TH giành cho 2^2n)

+2^0;2^6;2^12;... tức là các số có cơ số =2; số mũ chia hết cho 6 thì chúng chia 9 dư 1 (1')

+2^2;2^8;2^14;... tức là các số có cơ số =2; số mũ chia 6 dư 2 thì chúng chia 9 dư 4 (2')

+2^4;2^10;2^16;... tức là các số có cơ số =2; số mũ chia 6 dư 4 thì chúng chia 9 dư 7 (3')

Từ (1'),(1) suy ra tích \(2^{2n}\left(2^{2n+1}-1\right)\)chia 9 dư 1.1=1. => \(2^{2n}\left(2^{2n+1}-1\right)-1\)chia hết cho 9

Từ (2'),(2) suy ra tích \(2^{2n}\left(2^{2n+1}-1\right)\)chia 9 dư 7.4=28 thì dư 1. => \(2^{2n}\left(2^{2n+1}-1\right)-1\)chia hết cho 9

Từ (3'),(3) suy ra tích \(2^{2n}\left(2^{2n+1}-1\right)\)chia 9 dư 4.7=28 thì dư 1 => \(2^{2n}\left(2^{2n+1}-1\right)-1\)chia hết cho 9

Vậy \(2^{2n}\left(2^{2n+1}-1\right)-1\)luôn chia hết cho 9