1/1 + 1/3 + 1/6 + 1/10 + 1/x.(x+1) : 2 = 2010/2011
tìm x
1+1/3+1/6+1/10+..........+2/x(x+1)=1+2009/2010 . Tìm x
theo đề bài ta có
1+ 1/3 +1/6+...+2/x(x+1)=1+2009/2010
=>1/3+1/6+....+2/x(x+1)=2009/2010
=>1/2(2+1):2+1/3(3+1):2+.....+1/x(x+1):2=2009/2010
=>2/2(2+1)+2(3+1)+....+2/x(x+1)=2009/2010
=>2(1/2.3+1/3.4+....+1/x(x+1)=2009/2010
=>1/2-1/3+1/3-1/4+.....+1/x-1/x+1=2009/2010:2
=>1/2-1/x+1=2009/4020
=>1/x+1=1/2-2009/4020
=>1/x+1=1/4020
=>x+1=4020
=>x=4020-1
=>x=4019
tìm STN x biết:1/3+1/6+1/10+...+2/x.(x+1)=2008/2010
`Answer:`
`1/3+1/6+1/10+...+2/(x.(x+1))=2008/2010`
`=2/6+2/12+2/20+...+2/(x.(x+1))=2008/2010`
`=2/(2.3)+2/(3.4)+2/(4.5)+...+(2)/(x.(x+1))=2008/2010`
`=2.(1/2-1/3+1/3-1/4+...+1/x(x+1))=2008/2010`
`=1/2-1/3+1/3-1/4+...+1/x-1/(x+1)=1004/2010`
`=1/2-1/(x+1)=1004/2010`
`=>1/(x+1)=1/2-1004/2010`
`=>1/(x+1)=1/2010`
`=>x+1=2010`
`=>x=2010-1`
`=>x=2009`
Tìm x biết 1/3+1/6+1/10+2/x.(x+1)=2010/1006
1/3+1/6+1/10+2/x.(x+1)=2010/1006
1/6+1/12+1/20+1/x.(x+1)=2010/2012
1/2.3+1/3.4+1/4.5+1/x.(x+1)=1005/1006
1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/x.(x+1)=1005/1006
1/2 - 1/5 + 1/x.(x+1)=1005/1006
3/10+1/x.(x+1)=1005/1006
1/x.(x+1)=1005/1006 - 3/10
1/x.(x+1)=1758/2515
x.(x+1)=1:1758/2515
x.(x+1)=2515/1758
Đến đây thì mình chịu òi!
tìm STN x biết:1/3+1/6+1/10+...+2/x.(x+1)=2008/2010
bạn giải cách làm dc ko?trình bày dễ hỉu mình vào nit phụ tick cho!
Tìm số tự nhiên x, biết rằng:
1/3 + 1/6 + 1/10 + ... + 2/x(x+1) = 2010/2012
Ta có : 1/3+1/6+1/10+ .....+2/x.(x+1)=2010/2012
=>2/6+2/12+2/20+........+2/x(x+1)=2010/2012
=>2.(1/2.3+1/3.4+1/4.5+.....+1/x.(x+1)=2010/2012
................................
Bạn tự làm tiếp nhé ! x=1005
Tìm số tự nhiên x biết :
1/3 + 1/6 + 1/10 + ... + 1/x *(x +1 ) /2 = 2009/2010
tìm x biết
1/3+1/6+1/10+.............2/x(x+1)=2009/2010
giúp mình cái
Giúp tớ giải nốt 2 bài tính nhanh này nhé, thanks
B = 1/3 + 1/6 + 1/10 + 1/15 + 1/21 + 1/28
D = 2009 x 2010 + 2000 / 2011 x 2010 - 2020
1+\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+....+\frac{2}{x.\left(x+1\right)}=1\frac{2008}{2010}\)
\(1+\frac{1}{3}+\frac{1}{6}+...+\frac{2}{x.\left(x+1\right)}=1\frac{2008}{2010}\)
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x\left(x+1\right)}=1\frac{2008}{2010}\)
\(\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=1\frac{2008}{2010}\):2
\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2009}{2010}\)
\(\Rightarrow1-\frac{1}{x+1}=\frac{2009}{2010}\)
\(\Rightarrow1-\frac{2009}{2010}=\frac{1}{x+1}\)
\(\Rightarrow\frac{1}{2010}=\frac{1}{x+1}\)
\(\Rightarrow x=2009\)
nha !
Ta có :A=1+\(\frac{2}{6}\)+\(\frac{2}{12}\)+......+\(\frac{2}{x\left(x+1\right)}\)=\(\frac{4018}{2010}\)
\(\Rightarrow\)A=\(\frac{2}{2.3}\)+\(\frac{2}{3.4}\)+...+\(\frac{2}{x\left(x+1\right)}\)=\(\frac{2008}{2010}\)
\(\Rightarrow\)A=2(\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+...+\(\frac{1}{x\left(x+1\right)}\))=\(\frac{2008}{2010}\)
\(\Rightarrow\)A=2(\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+...+\(\frac{1}{x}\)-\(\frac{1}{x+1}\))=\(\frac{2008}{2010}\)
\(\Rightarrow\)A=2(\(\frac{1}{2}\)-\(\frac{1}{x+1}\))=\(\frac{2008}{2010}\)
\(\Rightarrow\)A=\(\frac{1}{2}\)-\(\frac{1}{x+1}\)=\(\frac{502}{1005}\)
\(\Rightarrow\)\(\frac{1}{x+1}\)=\(\frac{1}{2010}\)\(\Rightarrow\)x+1=2010\(\Rightarrow\)x=2009