Tính \(1+\frac{1+2}{2}+\frac{1+2+3}{3}+.....+\frac{1+2+3...+199}{199}\)
\(Tính:1+\frac{1+2}{2}+\frac{1+2+3}{3}+\frac{1+2+3+4}{4}+.....+\frac{1+2+3+.....+199}{199}\)
Cho dãy tính :
1 + \(\frac{1+2}{2}+\frac{1+2+3}{3}+.......+\frac{1+2+3...+199}{199}=?\)
\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}}{\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{192}{2}+\frac{199}{1}}\)
Tính nhanh giúp mình nha ! NHANH HẾT MỨC CÓ THỂ NHÉ
D=\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{198}+\frac{1}{199}}{\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{198}{2}+\frac{199}{1}}\)
\(D=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{198}+\frac{1}{199}}{\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{198}{2}+\frac{199}{1}}\)
\(D=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{198}+\frac{1}{199}}{\left[\frac{1}{199}+1\right]+\left[\frac{2}{198}+1\right]+\left[\frac{3}{197}+1\right]+...+\left[\frac{198}{2}+1\right]}\)
\(D=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{198}+\frac{1}{199}}{\frac{200}{199}+\frac{200}{198}+\frac{200}{197}+...+\frac{200}{2}}\)
\(D=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{198}+\frac{1}{199}}{200\left[\frac{1}{199}+\frac{1}{198}+\frac{1}{197}+...+\frac{1}{2}\right]}=\frac{1}{200}\)
Tính B=\(\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+....+\frac{198}{2}+\frac{199}{1}\)
Bn kham khảo câu hỏi tương t5uwj nha
chúc bn học tốt
nhớ k mình nha
cám ơn bn
và bn cũng có thể kham khảo học 24 nha
tôi nghĩ bài này biến đổi đc thui chứ ko tính đc.
\(B=\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+....+\frac{198}{2}+\frac{199}{1}\)
\(=\left(\frac{1}{199}+1\right)+\left(\frac{2}{198}+1\right)+\left(\frac{3}{197}+1\right)+....+\left(\frac{199}{1}+1\right)-199\)
\(=\frac{200}{199}+\frac{200}{198}+....+\frac{200}{1}+\frac{200}{200}-200\)
\(=200.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{199}+\frac{1}{200}\right)\)
\(1+\frac{1+2}{2}+\frac{1+2+3}{3}+.......+\frac{1+2+3+...+199}{199}=?\)= ....................
\(1+\frac{1+2}{2}+\frac{1+2+3}{3}+...+\frac{1+2+3+...+199}{199}\)
\(\text{Đ}\text{ặt}S=1+\frac{1}{2}+\frac{1+2+3}{3}+...+\frac{1+2+...+199}{199}\)
\(\Rightarrow S=1+\frac{\left(2+1\right).2}{2}+\frac{\left(3+1\right)3}{3}+...+\frac{\left(199+1\right)199}{199}\)
\(S=1+\frac{2+1}{1}+\frac{3+1}{1}+...+\frac{199+1}{1}\)
\(\Rightarrow S=1+\left(3+4+...+200\right)\)
Dãy (3+4+..+200 ) có số số hạng là :
(200-3):1+1=198 ( số )
Tổng của dãy (3+4+..+200 ) là :
(200+1)x198:2=19899
=> S=1+(3+4+...+200)
=> S=1+19899
=> S=19900
\(1+\frac{1+2}{2}+\frac{1+2+3}{3}+...........+\frac{1+2+3......+199}{199}\)
Tính: 1+\(\frac{1+2}{2}\)+\(\frac{1+2+3}{3}\)+....+\(\frac{1+2+3+....+199}{199}\)